

HomeLYnk

Product Manual

2

Contents

1 Quick start up guide .. 6

1.1 Default configuration .. 8

1.2 Discover HomeLYnk IP address ... 10

1.3 Firmware upgrade ... 11

1.4 HomeLYnk for KNX/EIB network configuration management with ETS3 12

1.5 KNX and IP Router settings ... 12

1.6 Create visualization for iPad/PC .. 13

1.6.1 Import objects ... 13

1.6.2 Create “building/floor” structure and add objects to the map 14

1.6.3 Add objects to newly created visualization map .. 16

1.6.4 Launching visualization on Smartphone device (iPod in this case)............................... 16

1.6.5 Launching vis. on PC, Tablet or any other touch device with large screen................... 17

2 Advanced guide ... 18

2.1 Utilities .. 18

2.1.1 Import ESF file ... 18

2.1.2 Reset /clean-up ... 18

2.1.3 Factory reset ... 18

2.1.4 Date and time.. 19

2.1.5 Install updates ... 19

2.1.6 Backup ... 19

2.1.7 Restore .. 19

2.1.8 Configuration .. 19

2.1.9 System ... 21

2.2 Objects .. 33

2.2.1 Object parameters .. 34

2.2.2 Set value .. 34

2.2.3 Object visualization parameters ... 35

2.2.4 Custom text value ... 36

2.2.5 Object control bar ... 36

2.2.6 Filter objects.. 36

2.3 Object Logs .. 37

2.4 Schedulers ... 38

2.4.1 Add new scheduler.. 38

2.4.2 Scheduler events ... 39

2.4.3 Scheduler holidays .. 39

3

2.5 Trend logs .. 40

2.5.1 Add new trend log ... 40

2.6 Vis. structure ... 41

2.6.1 Levels ... 41

2.6.2 Second level .. 41

2.6.3 Plans .. 42

2.6.4 Layout .. 42

2.6.5 Widgets ... 43

2.6.6 Visualization structure example .. 44

2.6.7 Plan .. 44

2.6.8 Layout .. 45

2.6.9 Widget ... 45

2.7 Visualization .. 46

2.7.1 Structure ... 46

2.7.2 Visualization Map .. 47

2.7.3 Plan Editor ... 47

2.7.4 Object .. 48

2.7.5 Plan link ... 50

2.7.6 Camera .. 50

2.7.7 Graph... 52

2.7.8 Text label ... 52

2.7.9 Image ... 54

2.7.10 Gauge .. 54

2.7.11 Frame .. 55

2.8 Vis. graphics .. 56

2.9 Scripting .. 57

2.9.1 Event based ... 58

2.9.2 Resident .. 59

2.9.3 Scheduled .. 59

2.9.4 User libraries ... 60

2.9.5 Common functions .. 60

2.9.6 Start-up script ... 60

2.9.7 Tools .. 60

2.9.8 General scripting description .. 61

2.9.9 Script Editor ... 62

2.10 Alerts ... 64

4

2.11 Logs ... 65

2.12 Error Log .. 66

2.13 Help ... 66

3 Modbus/RS-485 .. 67

3.1 Characteristics ... 67

3.1.1 Modbus RTU Interface .. 67

3.1.2 Modbus TCP Interface ... 68

3.2 Configuration commands .. 68

3.3 Function codes (0..127) ... 71

3.4 Master mode functions ... 78

3.5 Slave mode functions .. 79

4 RS-232 ... 80

4.1 Characteristics ... 80

4.2 Configuration commands .. 80

5 USB 2.0 .. 81

5.1 Characteristics ... 81

5.2 Configuration commands .. 81

6 LUA – Programming Language .. 83

6.1 Object functions .. 83

6.2 Group communication functions .. 83

6.3 Returned object functions .. 84

6.4 Data type functions ... 84

6.5 Data types ... 84

6.6 Data storage functions .. 85

6.7 Alert functions ... 86

6.8 Log functions ... 87

6.9 Time functions .. 87

6.10 String functions ... 88

6.11 Input and output functions ... 93

6.12 Script control function .. 93

6.13 Conversions ... 93

6.14 Bit operators ... 94

6.15 Input and output facilities ... 94

6.16 Mathematical functions .. 95

6.17 Table manipulation ... 97

6.18 Operating system facilities .. 98

5

6.19 Extended function library ... 99

7 Script examples ... 101

7.1 Binary filter .. 101

7.2 Binary gate with bit gate ... 101

7.3 Gate with byte gate... 101

7.4 Or - Port (2 in 1 0ut) .. 102

7.5 And - Port (2 in 1 0ut) .. 102

7.6 Or - Port (5 in 2 0ut) .. 103

7.7 And - Port (5 in 2 0ut) .. 103

7.8 Telegram transformer (0/1 bit to 0-255 byte) .. 104

7.9 Compare value .. 104

7.10 Save Scene 1 (RGB value) .. 105

7.11 Call Scene 1 (RGB value ... 105

7.12 Hysteresis .. 105

7.13 Random byte value ... 105

7.14 Cyclic Repeater (delay 60 seconds) ... 106

7.15 Stepper / Counter Positive input .. 106

7.16 Stepper / Counter Negative input ... 106

7.17 Reset Stepper / Counter ... 106

7.18 On Delay (button set to "update only internal") .. 107

7.19 Average ... 107

7.20 Off Delay ... 107

7.21 Stare case timer (with variable time object) ... 107

7.22 Value memory (write to storage) .. 107

7.23 Value memory (get from storage) .. 107

7.24 Multiplexer (1 in / 3 out) Notice: Object type needs to be the same 107

7.25 Round function using Common functions .. 107

7.26 Write data and time to KNX group addresses .. 108

7.27 Write data to groups with tags ... 108

Quick start up guide

6

1 Quick start up guide

• Mount the device on DIN rail

• Connect the bus cables (KNX, ModBus, RS232) or flash drive

• Connect 24V power supply to the device

(24V DC conductor to the red clamp, GND conductor to the blue clamp)

• Recommended accessory - power supply REG/24V DC/0,4A, article No.: MTN693003

• Connect Ethernet cable from the PC.

• Change the IP address of the computer to e.g. 192.168.0.9, mask 255.255.255.0

• Run Google Chrome or Mozilla Firefox (if OS Windows) Safari (if iOS) and go for

192.168.0.10.

Note: Internet Explorer is not supported.

 PC/Tablet visua
designed with visualization maps with objects,

10’’).

 Smartphone visualization
Visualization designed for iPhone/iPod/iPad/Android sm

small resolution). All objects which are added in

visible in this Smartphone visualization (if there is no

 Scheduler
manage scheduler tasks, for example, specify thermostat values depending on the day of the

week, time and holidays

 Trends
ability to compare data fr

Configurator
under this icon. Access is only for admin user.

Quick start up guide

7

PC/Tablet visualization – Under this icon is a visualization

designed with visualization maps with objects, for PC, iPads, Android tablets (preferably

Smartphone visualization –Under this icon navigate is a

Visualization designed for iPhone/iPod/iPad/Android smartphones/ Android tablets(7’’ and

small resolution). All objects which are added in HomeLYnk configurator by default are

visible in this Smartphone visualization (if there is no Hide in Smartphone

Scheduler – This Icon navigate to user friendly interface for end

manage scheduler tasks, for example, specify thermostat values depending on the day of the

week, time and holidays

Trends – This icon navigate to user friendly display of Trend logs with the

ability to compare data from 2 different dates. It can display trends up to 10 years.

Configurator – All programming and configurations can be performed

under this icon. Access is only for admin user.

Under this icon is a visualization

for PC, iPads, Android tablets (preferably

Under this icon navigate is a

artphones/ Android tablets(7’’ and

configurator by default are

Hide in Smartphone option enabled).

friendly interface for end-user to

manage scheduler tasks, for example, specify thermostat values depending on the day of the

This icon navigate to user friendly display of Trend logs with the

om 2 different dates. It can display trends up to 10 years.

All programming and configurations can be performed

Quick start up guide

8

1.1 Default configuration

HomeLYnk Configurator

Login Password

admin admin

PC/Tablet visualization/Smartphone

visualization/ Schedulers/ Trends

Access right Login Password

Read-only:

Write:

Write + admin level

visview

viscontrol

visadmin

visview

viscontrol

visadmin

IP address on LAN 192.168.0.10

Networks mask on LAN 255.255.255.0

Change IP settings

In Configurator ���� Utilities���� System����

Network ���� Interfaces window click on the

specific interface to change the IP settings.

Protocol– Specific protocol used for addressing

� Static IP – Static IP address. By defaul

� DHCP – DHCP protocol used to fetch IP configuration.

IP address IP address received from the DHCP server. This field appears only if the IP address

is given or else it is hidden.

Network mask Network mask. By default 255.255.255.0 (/24)

Gateway IP Gateway IP address

DNS server DNS server IP address

MTU Maximum Transmission Unit,

in the communication protocol. By default 150

When changes are done, the following icon appears

should be applied for changes to take effect. homeLYnk will automatically reboot after these

changes are applied

Quick start up guide

9

Specific protocol used for addressing

Static IP address. By default 192.168.0.10

DHCP protocol used to fetch IP configuration.

IP address received from the DHCP server. This field appears only if the IP address

is given or else it is hidden.

Network mask. By default 255.255.255.0 (/24)

Gateway IP address

DNS server IP address

Maximum Transmission Unit, the largest size of the packet which could be passed

in the communication protocol. By default 150

When changes are done, the following icon appears in the top

should be applied for changes to take effect. homeLYnk will automatically reboot after these

IP address received from the DHCP server. This field appears only if the IP address

the largest size of the packet which could be passed

in the top-right corner. This

should be applied for changes to take effect. homeLYnk will automatically reboot after these

Quick start up guide

10

1.2 Discover HomeLYnk IP address

Windows PC

Easiest way is by using the utility Service

Browser which can be downloaded here:

http://marknelson.us/2011/10/25/dns-service-

discovery-on-windows/

http://marknelson.us/attachments/2011/bonjo

ur-windows/ServiceBrowserExe.zip

Note: Make sure that your firewall is not

blocking TCP connection port :20480

Linux PC

The utility called Avahi, can be

downloaded here:

www.avahi.org

Android

The freely available app called ZeroConf

Browser, can be downloaded in Play Store:

http://play.google.com/store/apps/details?id=c

om.grokkt.andriod.bonjour&hl=en

Quick start up guide

11

iOS/Mac OS

The freely available app called Discovery

bonjour browser can be downloaded in App

Store:

https://itunes.apple.com/en/app/discovery-

bonjour-browser/id305441017?mt=8

For iPad install the iPhone/iPod version of the

utility.

1.3 Firmware upgrade

Note: Before each upgrade please backup the visualization, scripts and object in Configurator ����

Utilities ���� Backup, as the database is cleaned during the upgrade. During the upgrade the device

will not respond as it will be rebooting.

Note: After each upgrade, it is strongly recommended to clean the browser cache.

Use web browser to perform upgrade of the software of homeLYnk. Firmware is available in a form

of images and can be downloaded from the support page of SE office /Planet tool.

Complete system upgrade

Configurator ���� Utilities���� System ���� System

���� Upgrade firmware

Quick start up guide

12

1.4 HomeLYnk for KNX/EIB network configuration management with ETS3

In order to use HomeLYnk with KNXnet/IP functionality and to program with other KNX bus devices,

the device should be added into the ETS Connection Manager.

 Extras ���� Options���� Communication

���� Configure interfaces

Put some freely chosen Name for the

connection

Choose Type = KNXnet/IP

Press Rescan button and then choose from the

drop down menu found HomeLYnk

Press OK

Back in Options ���� Communication window

select newly created interface as

Communication Interface from the drop-down

menu.

To test the communication with ETS, press Test

button

Make sure that bus status is Online – press

button in ETS.

1.5 KNX and IP Router settings

KNX specific configuration is located in

Configurator ���� Utilities���� System���� Network

���� KNX connection

Quick start up guide

13

General tab

Mode

� TP-UART

� EIBnet/IP Tunneling

� EIBnet/IP Routing

 KNX connection mode. homeLYnk has TPUART interface by default built-in.

Parameter KNX corresponding interface in OS of the system

KNX address KNX physical address of the device

KNX IP features Use this device with KNX IP features e.g. for KNXnet/IP network configuration

Multicast interface Multicast interface can be used when sending KNX telegrams to

other KNX networks over UDP/IP

Multicast IP Multicast IP address

Maximum telegrams in queue Count of maximum telegrams in the queue

Note: If no KNX TP is connected to the device, Routing mode should be used so that the group

addresses can be updated correctly. If the Routing mode is used, Parameter field should be left

empty. System should be rebooted (System ���� Reboot) after each setting change in KNX connection.

1.6 Create visualization for iPad/PC

1.6.1 Import objects

Complete ETS project generate .ESF* file from

ETS via

File���� Extract data����Export to OPC server

Import *.ESF file to

Configurator���� Utilities ���� Import ESF file

Or connect homeLYnk to the bus and it will

detect objects automatically in Objects tab once

they are activated. This option is

Enabled/Disabled Configurator���� Utilities

Configuration ���� Discover new objects.

Objects can be added manually as well.

1.6.2 Create “building/floor” structure and add objects to the map

Go to Configurator���� Vis.structure

Vis. Structure allows creating all buildings levels

and visualizations plans. Additionally it can

create Layouts and Widgets for visualization

plans.

Starting new projects, only Layouts and

Widgets folders are visible. Adding new level

allows defining specific Plan of ‘flat’. Layouts

and Widgets are additional tools which are not

mandatory for basic visualizations; can define

and implemented in many other Plans.

Quick start up guide

14

Or connect homeLYnk to the bus and it will

tab once

Utilities����

Create “building/floor” structure and add objects to the map

Vis. Structure allows creating all buildings levels

lans. Additionally it can

create Layouts and Widgets for visualization

folders are visible. Adding new level

Layouts

e not

mandatory for basic visualizations; can define

Levels

To add new Level press at

name, additional levels can be added later.

Second level

If additional levels are needed press on

Select Add second level and provide name and sort order.

Each level can be duplicated with sublevels and plans by pressing duplicate

icon next to the level.

. Main level usually is the project

 next to the main level

Select Add second level and provide name and sort order.

Each level can be duplicated with sublevels and plans by pressing duplicate

Plans

To add Plans press on next to a level und

which another plan is to be added and select

Add plan.

Name Name of the plan

Layout Layout for the plan. All

the plan including background color and plan image if they are not

de

PC/Tablet visualization [Show, Show and make default, Hide]

 Visibility for this particular plan in PC/Tablet visualization

Smartphone visualization [Show, Show and make default, Hide]

 Visibility for this particular plan in Smartphone

Background image Select background previously added to Vis. graphics

 -

Background color Choose background color of the plan

Repeat background image To show the image once or repeat it and fill the whole plan

Sort order Sort order for the plan, this is dependent on where the particular

plan is located on the specific level

Admin only access Enable admin only access for the floor (visadmin user)

Note: Each Plan can be duplicated together with all components on a pl

next to the plan

Quick start up guide

15

next to a level under

which another plan is to be added and select

Name of the plan

Layout for the plan. All Objects from the Layout will be duplicated on

the plan including background color and plan image if they are not

defined separately.

[Show, Show and make default, Hide]

Visibility for this particular plan in PC/Tablet visualization

[Show, Show and make default, Hide]

Visibility for this particular plan in Smartphone visualization

Select background previously added to Vis. graphics

-> Images/Backgrounds

Choose background color of the plan

To show the image once or repeat it and fill the whole plan

Sort order for the plan, this is dependent on where the particular

plan is located on the specific level

Enable admin only access for the floor (visadmin user)

Each Plan can be duplicated together with all components on a plan by pressing duplicate icon

from the Layout will be duplicated on

the plan including background color and plan image if they are not

Visibility for this particular plan in PC/Tablet visualization

visualization

Select background previously added to Vis. graphics

To show the image once or repeat it and fill the whole plan

Sort order for the plan, this is dependent on where the particular

Enable admin only access for the floor (visadmin user)

an by pressing duplicate icon

1.6.3 Add objects to newly created visualization map

Go to Configurator���� Visualization

After the Level and plan’s structure are defined in

Visualization tab. Controlled and monitored objects can be added and managed in this section. Both

the side bars can be minimized by pressing the left/right arrow icon which will make the map appear

more visible especially on small displays.

Existing objects can be added to the map by clicking on

Once the object parameters are defined, press

will appear. This object can be moved to the desired location but whilst in editing mode

will not work. When all the necessary objects are added, press

that the objects can be visualized.

1.6.4 Launching visualization on Smartphone device (iPod in this case)

• Make sure the iPod is connected wirelessly

– wireless router).

• In the browser enter HomeLYnk’s IP (default 192.168.0.10).

• Click on the Smartphone

/shortcut in the iPod.

Quick start up guide

16

Add objects to newly created visualization map

Visualization

After the Level and plan’s structure are defined in Vis. structure tab, it can be visualized in

olled and monitored objects can be added and managed in this section. Both

the side bars can be minimized by pressing the left/right arrow icon which will make the map appear

more visible especially on small displays.

to the map by clicking on Unlock current floor plan

Once the object parameters are defined, press Add new object button and a newly created object

will appear. This object can be moved to the desired location but whilst in editing mode

When all the necessary objects are added, press Save and reload floor plan

that the objects can be visualized.

Launching visualization on Smartphone device (iPod in this case)

Make sure the iPod is connected wirelessly to the HomeLYnk (through separate access point

In the browser enter HomeLYnk’s IP (default 192.168.0.10).

Click on the Smartphone visualization icon . Save the application as permanent

tab, it can be visualized in the

olled and monitored objects can be added and managed in this section. Both

the side bars can be minimized by pressing the left/right arrow icon which will make the map appear

plan for editing button.

button and a newly created object

will appear. This object can be moved to the desired location but whilst in editing mode the object

Save and reload floor plan button so

to the HomeLYnk (through separate access point

. Save the application as permanent

1.6.5 Launching vis. on PC, Tablet or any other touch device with large screen

• Make sure the PC/Tablet device is able to access HomeLYnk and enter it’s IP in the browser

(default 192.168.0.10).

• Click on the PC/Tablet visualization

• Then minimize side bar by pressing on left

Quick start up guide

17

s. on PC, Tablet or any other touch device with large screen

Make sure the PC/Tablet device is able to access HomeLYnk and enter it’s IP in the browser

visualization and enter the “plan” you want to see.

Then minimize side bar by pressing on left-arrow icon to make the map more visible.

s. on PC, Tablet or any other touch device with large screen

Make sure the PC/Tablet device is able to access HomeLYnk and enter it’s IP in the browser

and enter the “plan” you want to see.

arrow icon to make the map more visible.

2 Advanced guide

2.1 Utilities

 Utilities available in the tab:

2.1.1 Import ESF file

Imports the ETS object file. It is essential to set

correct data types for imported objects. Existing

objects would not be overwritten. Objects with

the same name are considered duplicates and

might not be imported.

2.1.2 Reset /clean-up

Deletes all objects from the HomeLYnk, including

visualization

2.1.3 Factory reset

Deletes all configuration and resets to factory

default settings. This feature is identical to the

double long pressing of the RESET push button.

Advanced guide | Utilities

18

Advanced guide

Imports the ETS object file. It is essential to set

for imported objects. Existing

objects would not be overwritten. Objects with

the same name are considered duplicates and

Deletes all objects from the HomeLYnk, including

Deletes all configuration and resets to factory

default settings. This feature is identical to the

double long pressing of the RESET push button.

2.1.4 Date and time

Network time protocol (NTP) is implemented.

With internet connection HomeLYnk will

automatically update time from servers:

0.europe.pool.ntp.org

1.europe.pool.ntp.org

2.europe.pool.ntp.org

3.europe.pool.ntp.org

Note: It is important to select correct time zone.

2.1.5 Install updates

 Install HomeLYnk update file *.lmup. HomeLYnk

will reboot after successful update

2.1.6 Backup

Backups all the objects ,trends, logs and

visualization

2.1.7 Restore

Restores configuration from backup

2.1.8 Configuration

By clicking on the arrow, KNX Connection

User Access settings can be accessed. By clicking

on the Configuration button, system general

settings appear.

Interface language – interface language.

List items per page –count of lines per page e.g.

Objects, Object logs, Alerts etc.

Discover new objects– KNX object sniffer is

enabled. If YES is selected, once triggered all new

objects would automatically appear in the

Advanced guide | Utilities

19

Network time protocol (NTP) is implemented.

Ynk will

: It is important to select correct time zone.

. HomeLYnk

KNX Connection and

accessed. By clicking

, system general

count of lines per page e.g.

KNX object sniffer is

enabled. If YES is selected, once triggered all new

objects would automatically appear in the

Objects list.

Object log size – max count of object logs.

Default log policy– log status for all objects or

only for checked objects can be selected.

Alert log size – max count of alerts logged

Log size– max count of logs

Error log size– max count of errors logged

PC/Tablet full screen – defines if the User mode

visualization is viewed in full screen mode

without any side bars.

PC/Tablet view - Align plans to top left, no size

limit. Centre plans, limit size, Centre plans

enable auto sizing

Note! Auto sizing will work only in web browsers

with Web Kit engine (Chrome, Safari) and Firefox

Show alerts in PC/Tablet – once new Alerts are

triggered it will pop-up in PC/Tablet visualization.

Note:

• HomeLYnk reboot is required when

changing "List items per page" or

"Language" parameter.

(Clear browser cache)

• HomeLYnk will keep log objects above

the limit for 15 minutes; after this time

elapse all records above the limit will be

cleared. It is necessary to take it in to

account while logging too many data in

time.

• Excessive object logging degrades

performance

Advanced guide | Utilities

20

log status for all objects or

User mode

is viewed in full screen mode

o top left, no size

limit. Centre plans, limit size, Centre plans-

Auto sizing will work only in web browsers

with Web Kit engine (Chrome, Safari) and Firefox

once new Alerts are

p in PC/Tablet visualization.

HomeLYnk reboot is required when

changing "List items per page" or

HomeLYnk will keep log objects above

15 minutes; after this time

he limit will be

cleared. It is necessary to take it in to

account while logging too many data in

Excessive object logging degrades

Advanced guide | Utilities

21

2.1.9 System

System allows managing router functionality on KNX/EIB HomeLYnk as well as access control

management and firmware upgrade.

Hostname

Defines host name for HomeLYnk

Packages

System � Packages shows the packages installed

in the system. Package is functional block of the

device. A new package can be added by pressing

on +

Shortcut 1

User Access

The login and password configuration window

is located in System UI login.

Access control is separated in 2 tabs:

Admin/Remote – access parameters for

HomeLYnk, Network, RSS and XML

Visualization – access parameters for

PC/Tablet and Smartphone visualization

Upgrade firmware

System � Upgrade firmware is used to

perform complete upgrade of the system

(both OS as well as HomeLYnk part).

Note! After each upgrade, it is strongly

recommended to clean the browser cache.

Note! During firmware upgrade the devic

not respond as HomeLYnk would be rebooting

several times.

Reboot

By executing System � Reboot command

HomeLYnk would restart.

Advanced guide | Utilities

22

The login and password configuration window

access parameters for

perform complete upgrade of the system

recommended to clean the browser cache.

During firmware upgrade the device will

not respond as HomeLYnk would be rebooting

command

Advanced guide | Utilities

23

Shutdown

By executing System � Shutdown command

HomeLYnk would shut down.

Note! It is strongly advised to shutdown the

system before the unit is powered off so that

the database can be saved securely.

Advanced guide | Utilities

24

Network

Interfaces

Ethernet interface is listed in the first tab. There

are possibilities to disable/enable or to take a

look at the traffic flow graph using special icons

on the right side.

By clicking on the interface you get to the

configuration

Protocol– specific protocol used for addressing

None– No protocol is used

Static IP – Static IP address. By default

192.168.0.10

DHCP – Use DHCP protocol to get IP

configuration.

Current IP- The IP address got from

DHCP server. This field appears only if

the IP address is given otherwise its

hidden

Network mask – network mask. By default

255.255.255.0 (/24)

Gateway IP – gateway IP address

DNS server – DNS server IP address

MTU– maximum transmission unit, the largest

size of the packet which could be passed in the

communication protocol. By default 1500

Ethernet interface data put through graph

On the main window of the Ethernets tab, if you

click on the button, a new window is opened.

It draws a real-time graph of the traffic flow

passing the interface (both In and Out). There is a

possibility to switch the units of measurement –

bytes/s or bytes/s.

Routes

System routing table is located in Network�

Routes menu. The window is divided in two parts

– Static routes and Dynamic route.

Advanced guide | Utilities

25

� Dynamic routes

Interface – Interface name

Destination– Destination IP address

Gateway – Gateway IP address

Network mask – Network mask

� Static routes

Interface – Interface name

Destination– Destination IP address

Gateway – Gateway IP address

Network mask – Network mask

Advanced guide | Utilities

26

ARP table

Address Resolution Protocol table is listed in

Network � ARP table.

KNX connection

KNX specific configuration is located in

Configurator -> Utilities -> Network�Network �

KNX connection window.

General

Mode TP-UART / EIBnet IP Tunnelling (NAT mode)

and IP Routing] – KNX connection mode.

HomeLYnk has TPUART interface by default built-

in.

Parameter–KNX corresponding interface in OS of

the system.

KNX address – KNX physical address of the

device.

KNX IP features – Use this device with KNX IP

features e.g. for KNXnet/IP network

configuration. If not active, then all IP

communication from KNX is blocked.

Multicast IP – multicast IP address.

Multicast TTL – default value is 1; it allows

communication between different sub networks.

Multicast interface – multicast interface to use

when sending KNX telegrams to other KNX

networks over UDP/IP, default 224.0.23.12.

Maximum telegrams in queue – count of

maximum telegrams in the queue.

Note: If KNX TP is not connected to the device,

Routing mode should be used in order the group

Advanced guide | Utilities

27

addresses are updated correctly. Once Routing

mode is used, Parameter field should be empty.

Please perform system reboot (System �

Reboot) after each setting change in KNX

connection.

Advanced guide | Utilities

28

SRC filter

Source filter accepts or drops received telegrams

from defined KNX devices/physical addresses. All

outgoing telegrams are not filtered.

SRC policy [No filter / Accept selected individual

addresses / Drop selected individual addresses] –

policy to apply to the list of source addresses.

Address list – list of individual or group

addresses. One address per line. Use * (e.g. 1.1.*

or 1/1/*) to filter all addresses in the given line.

 Note: KNX IP features should be on for filter to

work

This applies to incoming telegrams only!

DST group filter

Destination group filter accepts or drops received

telegrams belonging to one group as 1/2/3 or

subgroup as 1/2/*. All outgoing telegrams are not

filtered.

DST group filter [No filter / Accept selected

individual addresses / Drop selected individual

addresses] – policy to apply to the list of

destination group addresses.

Address list –list of group addresses.

One address per line .Use *(e.g. 1/1/*) to filter all

addresses in the given line.

Note: KNX IP features should be on for filter to

work.

DST indiv. filter

Destination individual filter accepts or drops

received telegrams from defined KNX

devices/physical addresses. All outgoing

telegrams are not filtered.

DST indiv. filter [No filter / Accept selected

individual addresses / Drop selected individual

addresses] – policy to apply to the list of

destination addresses.

Advanced guide | Utilities

29

Secure tunnel

To make a secure tunnel between two KNX

networks. In comparison with standard tunnels,

which use UDP protocol, this tunnelling uses TCP

what makes it very reliable thanks to package

delivery acknowledgement. This ensures that

sender always knows if the package is delivered

to the recipient.

Secure tunnel [Disabled / Client / Server] – Secure

tunnel mode.

Server IP – In case of secure client, server IP

should be specified here.

Local IP– Local IP address.

Network mask – Network mask.

Password– Password.

Services

NTP Client

Network Time Protocol (clock synchronization)

Servers 1-4

Define server where from date and time is

downloaded from

FTP server

FTP server of HomeLYnk can be accessed by

enabling Service � FTP Server.

Server status – secure tunnel mode

Port – port of the service

Username – login name, ftp

Password – password, length 4-20 symbol

Passive mode min port– minimum port of

passive mode

Passive mode max port – maximum port of

passive mode

System monitoring

Definition of system auto check and auto

reboot

Advanced guide | Utilities

30

Network Time Protocol (clock synchronization)

Define server where from date and time is

FTP server of HomeLYnk can be accessed by

20 symbol

imum port of

maximum port of

Advanced guide | Utilities

31

Status

System status

eneral

Memory usage

Partitions

Network status

Network utilities

Ping

Traceroute

Advanced guide | Utilities

32

System log

Running processes

Help

SW license description of the FlashSYS.

2.2 Objects

List of KNX network objects appear in

way:

- Sniffing the bus for telegrams from unknown group addresses (if enabled in

- Adding manually

- Importing ESF file (in Utilities

Objects can be sorted with the following parameters

value, Tags, Comments and Updated at

Advanced guide | Objects

33

List of KNX network objects appear in Objects menu. The object appears in the list in the followi

Sniffing the bus for telegrams from unknown group addresses (if enabled in

Utilities)

Objects can be sorted with the following parameters– Name, roup address, Data type, Current

Updated at.

menu. The object appears in the list in the following

Sniffing the bus for telegrams from unknown group addresses (if enabled in Utilities)

Name, roup address, Data type, Current

2.2.1 Object parameters

To change the settings for existing or new

objects, press on the specific list entry.

Object name – Name for the object

Group address – Group address of this object

Data type – KNX data type for the object. This

has to be set once the HomeLYnk sniffs the

new object for actual work.

Unit/suffix – Add unit/suffix to value of

object. Units which cannot be created from

keyboard can be created in external editor

and pasted in to the browser

Log – Enable logging for this object. Logs will

appear in Objects logs tab.

Export – Make object visible by remote XML

requests

Poll interval (seconds) – Perform automatic

object read after the selected time interval

Tags – Assign this object to some tag which

can be later used in writing scripts, for

example, All_lights_first_floor. (Please refer to

the Script library for use cases)

Current value– Current value of the object

Object comments – Comment for the object

2.2.2 Set value

In the object list, by pressing on

the button , the state of the object can be

changed.

The appearance of the New value depends on

what visualization parameters are set for

specific object.

Advanced guide | Objects

34

To change the settings for existing or new

Group address of this object

KNX data type for the object. This

has to be set once the HomeLYnk sniffs the

Add unit/suffix to value of

object. Units which cannot be created from

keyboard can be created in external editor

this object. Logs will

Make object visible by remote XML

Perform automatic

object read after the selected time interval

Assign this object to some tag which

d in writing scripts, for

. (Please refer to

Current value of the object

Comment for the object

, the state of the object can be

depends on

what visualization parameters are set for

2.2.3 Object visualization parameters

By pressing on the button of the

corresponding object specific visualization

parameters for this type of object can be set.

1 bit

• Control type – type of the visual

control element

o Toggle

o Checkbox

4 bit (3 bit controlled)

Step size – step size example for blinds control

2 bit (1 bit controlled), 1 byte unsigned integer

(scale), 1 byte signed integer, 2 byte unsigned

integer, 2 byte signed integer, 2 byte floating

point (temperature), 4 byte unsigned integer,

4 byte signed integer, 4 byte floating point

Control type – type of the visual control

element

Slider

Direct input / Step

+/-

Minimum value

Maximum value

Step size – If defined value will change depend

of defined step

Advanced guide | Objects

35

Object visualization parameters

button of the

cific visualization

parameters for this type of object can be set.

type of the visual

step size example for blinds control

rolled), 1 byte unsigned integer

(scale), 1 byte signed integer, 2 byte unsigned

integer, 2 byte signed integer, 2 byte floating

point (temperature), 4 byte unsigned integer,

4 byte signed integer, 4 byte floating point

If defined value will change depend

2.2.4 Custom text value

In the object list, by pressing on the button,

 custom text can be added to the object

values.

Custom text values can be set only to Boolean

and integer values.

Default text – Text which will be displayed if

value is not defined

Object value – Add custom value, select

Object value and define Display text

2.2.5 Object control bar

Add new object – Manually add new object to

the list

Auto update enabled –Specifies either the

object list is updated automatically or not

Clear – Clear the list of group addresses

Next/Previous page – Move to next or

previous page

Refresh – Refresh the object list

2.2.6 Filter objects

On the left side of the object list there is

filtering possible. To perform the filtering type

the name, group address, tag or specify the

data type of the object and press on Filter

button.

Advanced guide | Objects

36

In the object list, by pressing on the button,

the object

Custom text values can be set only to Boolean

Text which will be displayed if

, select

Manually add new object to

Specifies either the

object list is updated automatically or not

On the left side of the object list there is

filtering possible. To perform the filtering type

the name, group address, tag or specify the

Filter

2.3 Object Logs

Object historical telegrams are available in

historical and future data will be logged in.

Filtering is available when there is a need to find specific period information.

Start date – start date and time for log filtering

End date – start date and time for log filtering

Name or group address

Value – specific object value

Source address – specific source address

All logs can be cleared by pressing

Note: Logging memory is set up in the

Advanced guide | Object Logs

37

Object historical telegrams are available in Object logs. Once logging is enabled for object, all the

historical and future data will be logged in.

Filtering is available when there is a need to find specific period information.

rt date and time for log filtering

start date and time for log filtering

 – specific name or group address of object

specific object value

specific source address

All logs can be cleared by pressing on Clear button.

Logging memory is set up in the Utilities � Configurations

. Once logging is enabled for object, all the

2.4 Schedulers

Schedulers allow the end user to control KNX group address values based on the date or day of the

week.

2.4.1 Add new scheduler

Object – The object group address which will be

controlled by the scheduler

Active – Define whether a scheduler is active or not

Name – Name of the scheduler

Start date – Start date of the scheduler

End date – End date of the scheduler

Advanced guide | Schedulers

38

Schedulers allow the end user to control KNX group address values based on the date or day of the

ress which will be

Define whether a scheduler is active or not

Schedulers allow the end user to control KNX group address values based on the date or day of the

2.4.2 Scheduler events

Event can be added both in administrator interface

as well as by the end user in the special User mode

schedulers interface.

Active – Define the event to be active or not

Value – Value to send to the group address when

the event will be triggered

Start time – Start time for the event

Days of the week – Days of the week when the

event will be triggered.

Hol – Holidays which are defined in Holidays tab

2.4.3 Scheduler holidays

Once the event will be marked to run in Hol, Holiday

entries will be activated

Advanced guide | Schedulers

39

both in administrator interface

User mode

Value to send to the group address when

Days of the week when the

tab

, Holiday

2.5 Trend logs

Trends logs or so called data logging allows the end user to store selected data and compare

different the time periods from the past.

2.5.1 Add new trend log

Object – Choose from list of object the one to

make trends for

Name – Name of the trend

Log type – Type of the log.

Counter type is used to count the date

Absolute value – saves the actual readings

Floating point precision – If the object is floating

type, then precision needs to be selected. Example

1.1111 = precision is 4

1 minute data – Average value of 1 minute for

specific time interval data will be shown on the

trend. E.g. if 1 hour – trend step will be 1 hour with

average 60 readings data

Hourly data – Average value of hourly data for

specific time interval

Daily data – Average value of daily data for specific

time interval

Monthly data – Average value of monthly data for

specific time interval

Log size – Define total trend log size of the object.

Trend logs are stored on 3.2 GB internal flash

memory

Advanced guide | Trend logs

40

Trends logs or so called data logging allows the end user to store selected data and compare

different the time periods from the past.

Choose from list of object the one to

If the object is floating

type, then precision needs to be selected. Example

Average value of 1 minute for

specific time interval data will be shown on the

trend step will be 1 hour with

Average value of hourly data for

Average value of daily data for specific

Average value of monthly data for

Define total trend log size of the object.

internal flash

Trends logs or so called data logging allows the end user to store selected data and compare

Advanced guide

2.6 Vis. structure

Vis. Structure is used for creating all buildings levels and visualizations plans. Additionally it can

create Layouts and Widgets for the plans visualization.

Starting new projects, only Layouts

user to define specific Plan of the flat.

mandatory for basic visualizations; they can be defined and implemented in other

2.6.1 Levels

To add new Level press on .

level usually is the project name. Additional levels

can be added later.

2.6.2 Second level

Second level could be used in buildings with many

floors.

If you need additional levels press on next to

your main level.

Select Add second level and give it a name and sort

order.

Each level can be duplicated together with

sublevels and plans via pressing duplicate icon next

to the level.

Advanced guide | Visualization structure

41

Vis. Structure is used for creating all buildings levels and visualizations plans. Additionally it can

create Layouts and Widgets for the plans visualization.

Layouts and Widgets folders are visible. Adding new level all

of the flat. Layouts and Widgets are additional tools which are not

mandatory for basic visualizations; they can be defined and implemented in other

. Main

s the project name. Additional levels

Second level could be used in buildings with many

next to

ame and sort

sublevels and plans via pressing duplicate icon next

Vis. Structure is used for creating all buildings levels and visualizations plans. Additionally it can

folders are visible. Adding new level allows the end

are additional tools which are not

mandatory for basic visualizations; they can be defined and implemented in other Plans.

Advanced guide

2.6.3 Plans

A Plan could be either one room from flat or one

function (as lighting or heating) for the whole flat.

To add Plans press on next to a level under

which the plan is to be added and select Add plan.

Name – Name for the plan.

Layout – Layout for this specific plan. All objects

from Layout will be duplicated on this particular

plan including background colour and plan image if

they are not defined separately for this specific

plan. Layout need to be created before being

added to the Plan.

PC/Tablet visualization

[Show, Show and make default, Hide] –Visibility

for this particular plan in the PC/Tablet

visualization

Smartphone visualization

[Show, Show and make default, Hide] – Visibility

for this particular plan in the Smartphone

visualization

Background image – Select background previously

added to Vis. graphics -> Images/Backgrounds

Background color – Choose background color of

the plan.

Repeat background image – Either to show the

image once or repeat it and fill the whole plan.

Sort order – Sort order for the plan, depends

where this particular plan will be located among

other in a specific level.

Admin only access – Enable admin only access for

this floor (visadmin user)

Each Plan can be duplicated together with all

components on a plan via pressing duplicate icon

next to the plan

Content of this Plan is to be defined under
Visualization tab

2.6.4 Layout

To add Layout pres on next to a Layout

folder.

Each Layout can be duplicated together with

all components via pressing duplicate icon

next to the Layout .

Advanced guide | Visualization structure

42

A Plan could be either one room from flat or one

le flat.

next to a level under

which the plan is to be added and select Add plan.

Layout for this specific plan. All objects

from Layout will be duplicated on this particular

ground colour and plan image if

they are not defined separately for this specific

plan. Layout need to be created before being

Visibility

Visibility

Select background previously

> Images/Backgrounds

Choose background color of

Either to show the

image once or repeat it and fill the whole plan.

Sort order for the plan, depends

where this particular plan will be located among

Enable admin only access for

Each Plan can be duplicated together with all

components on a plan via pressing duplicate icon

next to a Layout

Each Layout can be duplicated together with

all components via pressing duplicate icon

Advanced guide

Content of this layout is to be defined under

Visualization tab.

2.6.5 Widgets

Widget is a small popup web page which can

be attached to a button.

To add widgets press on next to widgets

folder. Each widget can be duplicated

together with all components via pressing

duplicate icon next to the widget . Content

of this widget is to be defined under

Visualization tab.

Note! Widget size always has to be smaller

than plan on which it is placed on.

Advanced guide | Visualization structure

43

Content of this layout is to be defined under

Widget is a small popup web page which can

next to widgets

together with all components via pressing

Content

Widget size always has to be smaller

Advanced guide | Visualization structure

44

2.6.6 Visualization structure example

2.6.7 Plan

Advanced guide | Visualization structure

45

2.6.8 Layout

2.6.9 Widget

2.7 Visualization

This tab is split in a tree section:

- Structure – Navigation tree for levels, plans, widgets which were created under visualization

structure tab.

- Visualization map – Actual visualization field where you can add all visualization

components

- Plan Editor – all parameters of the component are set up here.

Both side bars can be minimized by pressing on

small displays.

2.7.1 Structure

To navigate between plans, layouts and widgets using navigati

During editing mode in bottom the below additional parameters are available

� Size of plans, layouts and widgets.

� Position of each component is also displayed here

Note: Size of the plan should be positioned correctly agains

Widget size always has to be smaller than plan on which it is placed on.

Always use component position to align objects.

Advanced guide | Visualization

46

Navigation tree for levels, plans, widgets which were created under visualization

Actual visualization field where you can add all visualization

all parameters of the component are set up here.

Both side bars can be minimized by pressing on icon making the plan more visible especially on

To navigate between plans, layouts and widgets using navigation tree in structure view.

During editing mode in bottom the below additional parameters are available

Size of plans, layouts and widgets.

Position of each component is also displayed here

Size of the plan should be positioned correctly against the background.

Widget size always has to be smaller than plan on which it is placed on.

Always use component position to align objects.

Navigation tree for levels, plans, widgets which were created under visualization

Actual visualization field where you can add all visualization

icon making the plan more visible especially on

on tree in structure view.

2.7.2 Visualization Map

Each added object will be placed in top left corner of plan. Move every new object to the correct

position via dragging it. To delete object select it and press

right corner of every object.

2.7.3 Plan Editor

Plan editor is located on the right side of the visualization map. Editing mode can be accessed by

pressing Unlock current plan for editing

Advanced guide | Visualization

47

Each added object will be placed in top left corner of plan. Move every new object to the correct

osition via dragging it. To delete object select it and press which is always positioned in top

is located on the right side of the visualization map. Editing mode can be accessed by

ock current plan for editing.

Each added object will be placed in top left corner of plan. Move every new object to the correct

which is always positioned in top

is located on the right side of the visualization map. Editing mode can be accessed by

2.7.4 Object

Every control or monitoring objects is

configured under this tab. Different data tapes

have different parameters.

Main object – List of existing group addresses

on KNX/EIB bus, the ones available for

configuration in Objects tab. In order to speed

up selection it is recommended to start writing

group address.

Status object – List of status objects on KNX/EIB

bus. Control object can also be used as status.

Custom name – Name for the object. Custom

name is important for Smartphone

Visualization; if the name is left blank group

address name is used instead.

Read-only – The object is read-only, no write

permission.

Hide in Smartphone– Do not show this object in

Smartphone Visualization.

Sort order– Sort number for Smartphone

visualization.

Hide background– Hide icon background.

Send fixed value– Allows sending specific value

to the bus each time the object is pressed.

No bus write – Value would not be written in to

KNX bus. Use full for triggering scripts with bus

load limitation.

Pin code – Via adding a pin you can protect

object. Each time value will be change pin code

will be requested to write.

Widget –Widget can be attached to a button

which needs to be created before. Widget

cannot be tested under editor mode; only

under PC/Tablet Visualization can it be tested.

Display mode [icon and value; icon; value]

how to display the object

Default Icon– Default icon of scale-type objects

Advanced guide | Visualization

48

configured under this tab. Different data tapes

List of existing group addresses

on KNX/EIB bus, the ones available for

tab. In order to speed

up selection it is recommended to start writing

List of status objects on KNX/EIB

bus. Control object can also be used as status.

Name for the object. Custom

rtant for Smartphone

Visualization; if the name is left blank group

only, no write

Do not show this object in

for Smartphone

Hide icon background.

Allows sending specific value

to the bus each time the object is pressed.

Value would not be written in to

th bus

Via adding a pin you can protect

object. Each time value will be change pin code

Widget can be attached to a button

which needs to be created before. Widget

itor mode; only

under PC/Tablet Visualization can it be tested.

[icon and value; icon; value] –

type objects

On icon – On state icon for binary-type objects

Off icon – Off state icon for binary-type objects

Show control – If enabled any control button

will be always open. Visible only in PC/Tablet

Visualization

For value-type objects, additional button would

appear while specifying parameters – Additional

icons. Different icons for different object values

can be defined in the window.

For value display text style can be defined

Once the object parameters are defined, press

Add to floor plan button and a newly created

object would appear. The object can be moved

to the any location of the plan. Note that while

being in editing mode, the object will not work.

When all necessary objects are added, press

Save and reload floor plan button so that the

objects starts functioning.

You can edit Each added object can be edited

while clicking on it in the Editing mode. Press

the Save button after each change.

Each object can be duplicated via pressing

duplicate button.

Reset button well set object parameters to

default settings.

Advanced guide | Visualization

49

type objects

type objects

If enabled any control button

will be always open. Visible only in PC/Tablet

type objects, additional button would

Additional

ons for different object values

For value display text style can be defined

Once the object parameters are defined, press

button and a newly created

object would appear. The object can be moved

location of the plan. Note that while

being in editing mode, the object will not work.

When all necessary objects are added, press

button so that the

You can edit Each added object can be edited

le clicking on it in the Editing mode. Press

after each change.

Each object can be duplicated via pressing

Reset button well set object parameters to

2.7.5 Plan link

In order to make visualization more convenient,

there are plan links integrated. Special icons on

the map can be added which would act as a link

to other plans.

Plan – Select plan link

Custom name –Name for the link

Hide background– Hide icon background

Icon – Icon which will be showed in

visualization. If only text is selected, text

parameters are selected.

Active state icon – If icon is selected active plan

icon is available.

Font size – Size of font

Text style – Text style – bold, italic, underscore

Custom font – Font name

Font color – Font color

Note It is recommended to use Layout for

menu and plan link creation. You can save time

while adding it to different plans and later when

making changes. By adding it to different plans

it would save time and be beneficial whe

changes are required.

2.7.6 Camera

HomeLYnk supports third party IP web camera

integration into its visualization.

Note Only cameras which support HTTP MJPEG

streaming in web browser.

Source url – Source address of the video

stream.

Width – Sub-window width for displaying of

picture.

Height– Sub-window height for displaying of

Advanced guide | Visualization

50

n more convenient,

there are plan links integrated. Special icons on

the map can be added which would act as a link

If icon is selected active plan

bold, italic, underscore

It is recommended to use Layout for

menu and plan link creation. You can save time

while adding it to different plans and later when

making changes. By adding it to different plans

it would save time and be beneficial when

HomeLYnk supports third party IP web camera

Only cameras which support HTTP MJPEG

ow width for displaying of

window height for displaying of

picture.

Custom name – Name for the object.

Auto open window – automatically open video

window.

Hide background– Hide icon background.

Sort order – Order cameras for touch

visualization

Note

• If IP camera requires user name and

password, enter the url in form

http://USER:PASSWORD@IP

• HomeLYnk is only redirecting stream

from camera to the browser. If stream

does not work it is web browser issue

not HomeLYnk.

• If there is cameras issue please check if

video stream is available in browser

• If camera wants to be available from

external, IP of camera need to be port

forwarded trough the router. While

adding external camera, IP with correc

port has to be used (IP:port). If local IP

is used then camera would not be

available from external

• Contact Technical support of camera

manufacturer if direct video stream is

hidden by the manufacturer.

• Camera image (*.png only!) can be

changed via replacing camera image

under Vis. graphics tab. Name of image

has to be ‘camera’.

Advanced guide | Visualization

51

automatically open video

If IP camera requires user name and

HomeLYnk is only redirecting stream

from camera to the browser. If stream

ser issue

If there is cameras issue please check if

video stream is available in browser

If camera wants to be available from

external, IP of camera need to be port

forwarded trough the router. While

adding external camera, IP with correct

port has to be used (IP:port). If local IP

is used then camera would not be

Contact Technical support of camera

manufacturer if direct video stream is

Camera image (*.png only!) can be

placing camera image

under Vis. graphics tab. Name of image

2.7.7 Graph

Real-time graphs can be integrated into

visualization system to monitor the current and

old value of scale-type objects. Make sure

logging is enabled for the object in Object

which values is planned to be shown in the

graph.

Data object – Group address of the object.

Custom name – Name of the object.

Icon– Icon to launch the graph.

Width – Sub-window width for displaying the

graph.

Height– Sub-window height for displaying the

graph

Number of points – Number of data points to

show in the graph.

Auto open window – Graph window is

automatically opened.

Hide background – Hide icon background

Once the graph parameters are defined, press

Add to plan button and newly created object

will appear. The object can be moved to the

desired location. Note that while being in

editing mode, the object will not work. Press on

Save and reload plan button so that the objects

starts functioning.

2.7.8 Text label

Text labels can be added and moved across the

visualization map.

Text – Label text

Font size – Label font size

Text style – style of the text – bold, italic,

underscored.

Custom font – font name.

Advanced guide | Visualization

52

visualization system to monitor the current and

type objects. Make sure

 tab

which values is planned to be shown in the

Group address of the object.

window width for displaying the

r displaying the

Number of data points to

Once the graph parameters are defined, press

wly created object

will appear. The object can be moved to the

desired location. Note that while being in

editing mode, the object will not work. Press on

button so that the objects

e added and moved across the

Advanced guide | Visualization

53

Font color– label font color

Once the label parameters are defined, press

Add new object button and newly created

object will appear on the map. The object can

be moved to the desired location. Press on Save

and reload floor plan button so the objects

starts functioning.

Last two rows in the color palette refer to the

predefined Schneider Electric corporate colors.

2.7.9 Image

Image section allows adding images from Local

storage or from the internet into the

visualization map. External image is useful for

example, to grab dynamic weather cast images.

Image source [Local, Remote] – Select image

source

Select image – Select image previously added to

Vis. graphics -> Images/Backgrounds

Image url – Source URL of the image

Width – Width of the image

Height – Height of the image

External link – External link URL when pressin

on the image

Once the image parameters are defined, press

Add to plan button and newly created object

will appear on the map. The object can be

moved to the desired location. Press on

and reload plan button so the objects starts

functioning. Image can be freely resized via

catching edge of image and move.

2.7.10 Gauge

Gauge allows dynamic way of visualization and

changing object value in the gauge.

Data object – KNX group address

Size – size of the gauge

Custom name – custom name for the object

Read only – make the gauge read only

Once the gauge parameters are defined, press

Add to plan button and newly created object

will appear on the map. The object can be

moved to the desired location. Press on Save

and reload plan button so that the objects

starts functioning.

Advanced guide | Visualization

54

Image section allows adding images from Local

visualization map. External image is useful for

example, to grab dynamic weather cast images.

Select image

Select image previously added to

External link URL when pressing

Once the image parameters are defined, press

button and newly created object

will appear on the map. The object can be

moved to the desired location. Press on Save

button so the objects starts

can be freely resized via

Gauge allows dynamic way of visualization and

object

Once the gauge parameters are defined, press

button and newly created object

will appear on the map. The object can be

Save

objects

2.7.11 Frame

Frame allows displaying internal or external

webpage in visualization. Schedulers and

Trends are integrated in to the frame.

Source – Select Scheduler, Trend log or external

URL

Url: - Source URL of external webpage

Width – width of frame

Height – height of frame

Once the Frame parameters are defined, press

Add to plan button and newly created object

will appear on the map. The object can be

moved to the desired location. Press on Save

and reload plan button so the objects starts

functioning. Frame can be freely resized via

catching edge of Frame and move.

Note

• Some web pages have java script which

prevent from using frame, if this is

implemented webpage will open in full

screen rather in frame

• It is recommended to stretch the frame

to maximum width if Scheduler or

Trend is used. Recommended minimum

width is 1024.

• Frame is only visible under PC/Tablet

Visualization.

• Do not allow Scheduler or Trend to be

viewed from Smartphone visualization.

Settings are available in Vis. structure

under dedicated plan.

Advanced guide | Visualization

55

Frame allows displaying internal or external

Select Scheduler, Trend log or external

Once the Frame parameters are defined, press

button and newly created object

will appear on the map. The object can be

Save

e objects starts

functioning. Frame can be freely resized via

Some web pages have java script which

prevent from using frame, if this is

implemented webpage will open in full

to stretch the frame

to maximum width if Scheduler or

Trend is used. Recommended minimum

Frame is only visible under PC/Tablet

Do not allow Scheduler or Trend to be

viewed from Smartphone visualization.

e in Vis. structure

Advanced guide | Visualization graphics

56

2.8 Vis. graphics

This tab is split into two sections, icons where all object icons are located and Images/Backgrounds.

Press on Add new icon button to add a new entry. The system accepts any size of icon.

Jpeg, Gif and PNG formats are supported. Name can contain letters, numbers, underscore and minus

sign

ZIP archive containing multiple graphics can be uploaded, each item cannot exceed 2MB, and whole

archive size cannot exceed 16MB.

Name (optional) – The name of the icon. It will appear in the list when adding new object. It can

contain letters, numbers, underscore and minus sign

File – Icon file location

CSS style can be changed via uploading new file. CSS define all control buttons, Smartphone

visualization, Scheduler and Trend. For more information how to modify CSS file please contact your

local front office for additional document.

Note! Please clear cache of the browser after uploading new css file.

Advanced guide | Scripting

57

2.9 Scripting

Scripting menu allows adding and managing various scripts, depending on the type of the script. Lua

programming language is used to implement user scripts. Most of the Lua language aspects are

covered in the first edition of "Programming in Lua" which is freely available at http://lua.org/pil/

Note: Data format — in most cases data is stored and transferred between HomeLYnk parts using

hex-encoded strings (2 bytes per 1 byte of data).

2.9.1 Event based

These are scripts that are executed when a

group event occurs on the bus. Usually used

when real-time response is required.

When pressing on the arrow on the lower side

of the Event-based, Resident or Scheduled

buttons, two options appear:

List view – Sort scripts in list view

Add new script – Add new script to the list

The following fields should be filled when

adding a new script:

Script name – The name of the script

Event group address – Allows to enter only

digits from 0.9 and / as a separator. When

icon appears on the right side of the text

wrong address form is used. Correct form of the

group-address is, for example, 1/1/1.

Tag – Script can run on tags. If group addresses

has tag attached to and script is using tag then

any telegram which is send to the group with

this tag will execute script.

Active– Specifies whether the script is active

(green circle) or disabled (red circle)

Execute on group read– Specifies whether the

script is executed on KNX group read telegram.

Category – A new or existing name of the

category the script will be included. This will not

affect on script action, helps only by grouping

the scripts and watching by categories in Tools

Print script listings page.

Description– description of the script

Note! If the script is to be run only on read

request ,use following script example:

if event.type == 'groupread' then

-- script here

end

Advanced guide | Scripting

58

These are scripts that are executed when a

group event occurs on the bus. Usually used

When pressing on the arrow on the lower side

Scheduled

dd new script to the list

The following fields should be filled when

Allows to enter only

digits from 0.9 and / as a separator. When

text-box,

wrong address form is used. Correct form of the

Script can run on tags. If group addresses

has tag attached to and script is using tag then

any telegram which is send to the group with

Specifies whether the script is active

Specifies whether the

script is executed on KNX group read telegram.

A new or existing name of the

t will be included. This will not

affect on script action, helps only by grouping

Tools

If the script is to be run only on read

Advanced guide | Scripting

59

2.9.2 Resident

Script name – The name of the script

Sleep interval (seconds) – Interval after which

the script will be executed.

Active– Specifies whether the script is active

(green circle) or disabled (red circle)

Category – A new or existing name of the

category the script will be included. This will not

affect on script action, helps only by grouping

the scripts and watching by categories in Tools

Print script listings page

Description– Description of the script

2.9.3 Scheduled

Script name – The name of the script

Minute – Minute

Hour – Hour

Day of the month – Day of the month

Month of the year – Month of the year

Day of the week – Day of the week

Active– Specifies whether the script is active

(green circle) or disabled (red circle).

Category – A new or existing name of the

category the script will be included. This will not

affect on script action, helps only by grouping

the scripts and watching by categories in Tools

Print script listings page.

Description– description of the script

Advanced guide | Scripting

60

2.9.4 User libraries

User libraries usually contain user defined

functions which are later called from other

scripts.

Secure the code

There is an option keep source available for user

libraries. Once disabled, the code is compiled in

the binary form and can’t be seen for further

editing. If this option is enabled, the source

code is seen in the editor.

Include the library in the scripts

To use functions defined in user library, they

should be included in the beginning of the

script, for example, user library with the name

‘test’ should be included as below :

require('user.test')

2.9.5 Common functions

Common functions contains library of globally

used functions. They can be called from any

script, any time, without special including like

with user libraries. Functions like

sunrise/sunset, Email are included by default in

Common functions.

2.9.6 Start-up script

Init script is used for initialization on specific

system or bus values on system start. Init script

is run each time after system is restarted

(power up, reboot in the SW or via RESET push

button).

2.9.7 Tools

Export helpers – Export scripting helpers

Import helpers – Import scripting helpers

Restore helpers – Restore default scripting

helpers

Backup user scripts – Backup all scripts in *.gz

file

Advanced guide | Scripting

61

Restore from archive – Restore script from

archive (*.gz) file with two possibilities:

Remove existing scripts and import from

backup.

Append keeping existing (s) scripts

Print script listings – shows all scripts with

codes in list format sorted by Categories.

2.9.8 General scripting description

There are five actions you can do with each of the script:

Duplicate – Duplicate the script with its source code

Editor – Enter scripting editor to write specific code for the particular program

Active – Make script active (green) or deactivate it (red)

Edit – Edit script name, description, category and other parameters

Delete – Delete the script. When pressing this icon the confirmation is asked to accept the delete.

Advanced guide | Scripting

62

2.9.9 Script Editor

When a script is added icon appears in

Editor column that allows opening a script in

scripting editor and re-working it with built-in

code snippets. Code snippets save time and

make the coding convenient. After clicking on

appropriate snippet, it automatically adds code

to the editor field.

Keyboard shortcuts are implemented for help

with script writing

Ctrl + F – Find syntax in a code, text will be

highlighted in yellow.

Ctrl + G – after finding a text via Ctrl+F we can

use Ctrl +G to select next syntax in a script.

Shift + Ctrl + G – select previous syntax.

Shift + Ctrl + F – replace syntax in a script by

another one. You will be allow to chose one by

one if you want to change it.

Shift + Ctrl + R - replace all syntaxes in a script

by another one at once.

Ctrl + Space – helps to auto detect code and

write for you. Press Ctrl + Space and write first

letter of a command then select correct one

from the list

There are five main groups of Script editor:

Helpers – Predefined code snippets, like if-then

statement. Helpers consist of three main sub-

groups:

Conditionals – If Else If, If Then etc.

Loops and iterators – Array, Repeat...Until etc

Math – Random value, Ceiling, Absolute value,

Round etc.

Objects/KNX bus – Get object value, Group

read, Group write, Update interval etc.

Storage – Get data from storage, Save data to

storage

Script control – Get other script status, enable

or disable other scripts

Alerts and logs – Alert, Log variables, Formatted

alert

Time functions – Delay script execution

Miscellaneous – Sunrise/sunset etc.

Advanced guide | Scripting

63

Serial – Communication through internal

HomeLYnk IO ports

Modbus – Create RTU/TCP connection, Write

register, Read register etc.

DMX – Communication with DMX devices

Group addresses – existing group addresses on

the KNX bus

Objects by name – Chose object by name

Tags – Choose object by tag

Data types – Choose object by data type.

Advanced guide | Alerts

2.10 Alerts

In Alerts tab a list of alert messages defined with alert function in scripts is located. The messages

are stored in the main database.

alert(message, [var1, [var2, [var3]]])

Stores alert message and current system time in the main database

Example

temperature = 25.3

if temperature > 24 then

-- resulting message: 'Temperature levels are too high: 25.3'

alert('Temperature level is too high: %.1f', temperature)

end

Advanced guide | Logs

2.11 Logs

Logs can be used for scripting code debugging. The log messages appear defined by log function.

log(var1, [var2, [var3, ...]])

Converts variables to human-readable form and stores them.

Example

-- log function accepts Lua nil, boolean, number and table (up to 5 nested levels) type variables

a ={ key1 ='value1', key2 =2}

b ='test'

c =123.45

-- logs all passed variables

log(a, b, c)

Advanced guide | Error log | Help

2.12 Error Log

Error messages from scripts are displayed in Error log tab.

2.13 Help

Advanced guide | Modbus/RS-485

3 Modbus/RS-485

3.1 Characteristics

The Modbus open standard allows you to receive a more in-depth analysis of consumption in all

areas of your building.

You can connect up to 31 Modbus devices/slaves of the following types of meters based on Modbus

remote terminal unit (RTU) within one Modbus line:

• Schneider Electric energy meters

• Schneider Electric power meters

• Schneider Electric Smart Interface Modules (SIM10M module)

• Non-Schneider Electric Modbus TCP/RTU devices (offering you greater flexibility)

With the information which the homeLYnk provides you can visualize energy or media consumption.

This can also be used to reduce consumption through the use of control strategies within the KNX/IP

network.

Modbus RTU is supported over RS485 interface. Modbus TCP is supported over Ethernet port.

Modbus communication is done directly from scripts (usually resident script is used to read Modbus

value after some specific time interval and write them into KNX object or visualization).

Once script is added, you can add the code in the Script Editor. There are lots of predefined code

blocks in the Helpers.

Application Example

Requirements

• measure and visualize how much energy is used lighting an office building

• measure the gas and water consumption in the building

• monitor the quality of the network to ensure the operational safety of IT equipment

Solution

• install an iEM3150 meter to record the energy consumed by the lighting

• install an iEM3255 meter to determine the power mains quality

• install a SIM10M module to measure gas and water consumption via impulse

• connect the devices to each other via Modbus

3.1.1 Modbus RTU Interface

• Modbus/RTU Master

• Modbus/RTU Slave

• Gateway Modbus TCP / RTU / KNX TP1/ KNX IP

• Copper Ethernet interface 10Mb, 100Mb

• Web server

• Supported Function Codes: #01, #02, #03, #04, #05, #06, #07, #0F, #10

Advanced guide | Modbus/RS-485

68

3.1.2 Modbus TCP Interface

• Modbus/TCP-IP Client

• Modbus/TCP-IP Server

• Gateway Modbus TCP / RTU / KNX TP1/ KNX IP

• Copper Ethernet interface 10Mb, 100Mb

• DHCP support

• Web server

• Max. open TCP connections 100

• Supported Function Codes: #01, #02, #03, #04, #05, #06, #07, #0F, #10

Grounding-Isolation

• RS485 interface is not isolated!

• Metal cover of the RJ45 socket is connected to device ground

3.2 Configuration commands

Create Modbus TCP object

require('luamodbus')

mb = luamodbus.tcp()

Create Modbus RTU object

require('luamodbus')

mb = luamodbus.rtu()

Open Modbus TCP connection

IP: 192.168.1.2, port: 1234

mb:open('192.168.1.2', 1234)

mb:connect()

Advanced guide | Modbus/RS-485

69

Open Modbus RTU connection

 38400 baud rate, even parity, 8 data bits, 1 stop bit, half duplex

mb:open('/dev/RS485', 19200, 'E', 8, 1, 'H')

mb:connect()

Terminal name:

'/dev/RS485'

Supported Baud rates:

300 bit/s

600 bit/s

1200 bit/s

2400 bit/s

4800 bit/s

9600 bit/s

19200 bit/s

38400 bit/s

57600 bit/s

115200 bit/s

230400 bit/s

Parity:

„N“ None

„E“ Even

„O“ Odd

Data bits: [Number of data bits = 5, 6, 7, 8]

Stop bits: [Number of stop bits 1, 2]

Duplex:

„H“ Half duplex

“F” Full duplex (not supported in RS-485)

The Baud rate is set depending on the distance between Modbus RTU devices. For instance with a

Baud rate of 9600 bit/sec the maximum communication distance between 1 - 15 Modbus RTU

devices is 1,200 metres. With the Baud rate of 19200 bit/sec the maximum communication distance

is 900 metres, as the table shows below:

Parity refers to the technique of checking if transmission has been successful when transmitting

between devices. It lets you know if some data has been lost during transmission.

Advanced guide | Modbus/RS-485

70

Setting of parity

The Modbus supports only 11 bit frames. The ETS application sets stop bits automatically depending

on the parity setting. "Parity" refers to the number of 1s in a given binary number. Odd parity means

there are an odd number of 1s and even parity means that there is an even number of 1s. Parity bits

are used as a means of error detection as digital data is transmitted and received.

Both the Gateway and Meter must always be set to the same as one another, odd, even or none.

The default parity mode of Modbus is "even" parity.

• Parity = None: choose between one and two stop bits

• Parity = Even: one stop bit is set

• Parity = Odd: one stop bit is set

Delay between frames

Some devices require considerable time after end of response until they are ready to receive the

following request from the master. In particular it applies to Schneider Electric SEPAM power devices

and legacy slave devices. As they are slow in dealing with the original request they may miss the

following request.

The time between requests should be greater than 3.5 characters according to the Modbus

specification. However, these legacy devices need more time. Please use delay command

appropriately:

Wait for 1.5 seconds

os.sleep(1.5)

Communication itself takes care of minimal 3, 5 character delay.

Example:

init modbus on first script execution

 if not mb then

 require('luamodbus')

 mb = luamodbus.rtu()

 mb:open('/dev/RS485', 38400, 'E', 8, 1, 'H')

 mb:connect()

 end

 mb:setslave(30)

 mb:flush()

Timeout interval between two consecutive bytes of the same message

mb:getbytetimeout()

mb:setbytetimeout(timeout)

Timeout interval used to wait for a response:

mb:getresponsetimeout()

mb:setresponsetimeout(timeout)

Timeout interval used to for an incoming indication from master (slave mode only):

mb:getreceivetimeout()

mb:setreceivetimeout(timeout)

Advanced guide | Modbus/RS-485

71

Set slave address

mb:setslave(123)

[1..247]

Read registers

read from address 1000

value = mb:readregisters(1000)

Close modbus connection

mb:close()

3.3 Function codes (0..127)

FC#01 Read Coils

Name “Read single coil”

Command coil = mb:readcoils(1000)

[address]

Name “Read Multiple coil”

Command coil1, coil2, coil3 = mb:readcoils(1000, 3)

[Starting address, Quantity of coils / max 2000 bits]

1 = ON, 0 = OFF

This function code is used to read from 1 to 2000 contiguous status of coils in a remote device. The

Request PDU specifies the starting address, i.e. the address of the first coil specified, and the number

of coils. In the PDU Coils are addressed starting at zero. Therefore coils numbered 1-16 are

addressed as 0-15.

The coils in the response message are packed as one coil per bit of the data field. Status is indicated

as 1= ON and 0= OFF. The LSB of the first data byte contains the output addressed in the query. The

other coils follow toward the high order end of this byte, and from low order to high order in

subsequent bytes.

If the returned output quantity is not a multiple of eight, the remaining bits in the final data byte will

be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the

quantity of complete bytes of data.

Advanced guide | Modbus/RS-485

72

FC#02 Read Discrete Inputs

Name “Read discrete input”

Command value = mb:readdiscreteinputs(1000)

[address]

Name “Read discrete inputs”

Command value = mb:readdiscreteinputs(1000,x)

[address of the first input specified, number of inputs]

This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a remote

device. The Request PDU specifies the starting address, i.e. the address of the first input specified,

and the number of inputs. In the PDU Discrete Inputs are addressed starting at zero. Therefore

Discrete inputs numbered 1-16 are addressed as 0-15.

The discrete inputs in the response message are packed as one input per bit of the data field. Status

is indicated as 1= ON; 0= OFF. The LSB of the first data byte contains the input addressed in the

query. The other inputs follow toward the high order end of this byte, and from low order to high

order in subsequent bytes.

If the returned input quantity is not a multiple of eight, the remaining bits in the final data byte will

be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the

quantity of complete bytes of data.

Advanced guide | Modbus/RS-485

73

FC#03 Read holding registers

Name “Read registers”

Command value = mb:readregisters(1015,6)

[starting address, quantity of registers 1..125]

This function code is used to read the contents of a contiguous block of holding registers in a remote

device. The Request PDU specifies the starting register address and the number of registers. In the

PDU Registers are addressed starting at zero. Therefore registers numbered 1-16 are addressed as 0-

15.

The register data in the response message are packed as two bytes per register, with the binary

contents right justified within each byte. For each register, the first byte contains the high order bits

and the second contains the low order bits.

FC#04 Read Input Registers

Name “Read input registers”

Command value = mb:readinputregisters(1015,6)

[starting address, quantity of registers 1..125]

This function code is used to read from 1 to 125 contiguous input registers in a remote device. The

Request PDU specifies the starting register address and the number of registers. In the PDU

Registers are addressed starting at zero. Therefore input registers numbered 1-16 are addressed as

0-15.

The register data in the response message are packed as two bytes per register, with the binary

contents right justified within each byte. For each register, the first byte contains the high order bits

and the second contains the low order bits.

Advanced guide | Modbus/RS-485

74

FC#05 Write Single Coil

Name “Write single bit”

Command value = mb:writebits(1000, true)

 [starting address, value “true” or “false”/”0”]

This function code is used to write a single output to either ON or OFF in a remote device. The

requested ON/OFF state is specified by a constant in the request data field. A value of FF 00 hex

requests the output to be ON. A value of 00 00 requests it to be OFF. All other values are illegal and

will not affect the output.

The Request PDU specifies the address of the coil to be forced. Coils are addressed starting at zero.

Therefore coil numbered 1 is addressed as 0. The requested ON/OFF state is specified by a constant

in the Coil Value field. A value of 0XFF00 requests the coil to be ON.

A value of 0X0000 requests the coil to be off. All other values are illegal and will not affect the coil.

The normal response is an echo of the request, returned after the coil state has been written.

FC#06 Write Single Register

Name “Write single register”

Command value = mb:writeregisters(1000, 123)

[address, value]

This function code is used to write a single holding register in a remote device. The Request PDU

specifies the address of the register to be written. Registers are addressed starting at zero. Therefore

Advanced guide | Modbus/RS-485

75

register numbered 1 is addressed as 0. The normal response is an echo of the request, returned after

the register contents have been written.

FC#0F Write Multiple Coils

Name “Write multiple bits”

Command value = mb:writebits(1000, true, false,true,…)

[address, bit value1, bit value2,..{max 1968 bits}]

This function code is used to force each coil in a sequence of coils to either ON or OFF in a remote

device. The Request PDU specifies the coil references to be forced. Coils are addressed starting at

zero. Therefore coil numbered 1 is addressed as 0. The requested ON/OFF states are specified by

contents of the request data field. A logical '1' in a bit position of the field requests the

corresponding output to be ON. A logical '0' requests it to be OFF. The normal response returns the

function code, starting address, and quantity of coils forced.

FC#10 Write Multiple Registers

Name “Write multiple registers”

Command value = mb:writeregisters(1000, 123, 321,222,..)

[address, value1, value2, ..{max 123 registers}]

Advanced guide | Modbus/RS-485

76

This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote

device. The requested written values are specified in the request data field. Data is packed as two

bytes per register. The normal response returns the function code, starting address, and quantity of

registers written.

Exception codes (128..255)

mb:readcoils(start, count)

mb:readdiscreteinputs(start, count)

mb:readregisters(start, count)

mb:readinputregisters(start, count)

These commands read one or many registers/coils from the start address and return all values on

success. In case of error, three variables are sent back:

• Nill

• Exception code description

• Exception code

Advanced guide | Modbus/RS-485

77

Advanced guide | Modbus/RS-485

78

3.4 Master mode functions

mb:setslave(slaveid)

 sets slave id to read/write data from/to

mb:readcoils(start, count) [01]

mb:readdiscreteinputs(start, count) [02]

mb:readregisters(start, count) [03]

mb:readinputregisters(start, count) [04]

 reads one or many registers/coils from the start address

 returns all values on success and nil, error description on error

mb:writebits(start, v1, [v2, [v3, ...]]) [05]

mb:writeregisters(start, v1, [v2, [v3, ...]]) [06]

 writes values to registers/coils from the start address

 single write will be used when only one value is supplied, multiple write otherwise

 returns all of values written on success and nil, error description on error

mb:reportslaveid()

 reads slave internal data

 returns values on success and nil, error description on error

Advanced guide | Modbus/RS-485

79

3.5 Slave mode functions

mb:receive()

 receives data from master with 1 minute timeout

 returns data as a binary string on success and nil, error description on error

mb:setmapping(coils, inputs, holding_regs, input_regs)

 creates memory mapping for the registers with size specified for each type

mb:handleslave()

 waits for an incoming indication from master and sends a reply when necessary

mb:getcoils(start, count)

mb:getdiscreteinputs(start, count)

mb:getinputregisters(start, count)

mb:getregisters(start, count)

 gets one or many register/coil values from mapping from the start address

 returns all values on success and nil, error description on error, exception code if applicable

mb:setcoils(start, v1, [v2, [v3, ...]])

mb:setdiscreteinputs(start, v1, [v2, [v3, ...]])

mb:setinputregisters(start, v1, [v2, [v3, ...]])

mb:setregisters(start, v1, [v2, [v3, ...]])

 sets values to register/coil mapping from the start address

 returns true on success and nil, error description on error, exception code if applicable

mb:setwritecoilcb(fn)

mb:setwriteregistercb(fn)

 sets a callback function for coil/register write event

 callback should accept two parameters - coil/register address and value (boolean or number)

 for multiple writes callback is executed for each coil/register separately

 use nil to remove a callback

Advanced guide | RS-232

4 RS-232

4.1 Characteristics

The RS-232 serial interface communications standard has been in use for very many years and is one

of the most widely used standards for serial data communications as a result of it being simple and

reliable.

The RS232 serial interface standard still retains its popularity and remains in widespread use. It is still

found on some computers and on many interfaces, often being used for applications ranging from

data acquisition to supplying a serial data communications facility in general computer

environments.

The long term widespread use of the RS232 standard has meant that products are both cheap and

freely available, and in these days of new higher speed standards, the reliable, robust RS232

standard still has much to offer. The interface is intended to operate over distances of up to 15

meter; it is based on one Master/ one Slave rule.

Application example

• Connection to simple devices or other bus sub systems

• Audio/video, IR system integration

4.2 Configuration commands

Configuration commands with parameters are the same as the Modbus RS-485 serial connection

Open connection

require('serial')

port = serial.open('/dev/RS232', {baudrate = 9600})

Write to port

port:write('test data')

Blocking read

-- script will block until 10 characters are read

data = port:read(10)

Timeout read

-- script will wait for 10 characters for 20 seconds

data = port:read(10, 20)

Close serial port

port:close()

Advanced guide | USB 2.0

5 USB 2.0

5.1 Characteristics

• USB 2.0 provides a bandwidth of 480 Mbit/s, corresponding to an effective image data rate

of 40 MB/s.

• Integrated voltage supply (5 VDC) for devices in the 4-pole cable. Devices complying with the

USB specification may consume a total of 500 mA from the bus. Devices with a power of up

to 2.5 W can therefore be supplied via the bus.

• USB cable must only be 4.5 m long at the maximum.

• Data transmission is possible in both directions

Application example

USB interface can be used for extending memory capacity via attaching USB flash drive.

5.2 Configuration commands

Read whole file at once. Returns file contents as a string on success or nil on error.

io.readfile (file)

Writes given data to a file. Data can be either a value convertible to string or a table of such values.

When data is a table then each table item is terminated by a new line character. Return boolean as

write result when file can be open for writing or nil when file cannot be accessed.

io.writefile (file, data)

Note: USB flash drive supports FAT, FAT32 and NTFS file system. Maximum size of Flash drive is

32GB.

Send and receive SMS messages via attaching USB GSM adapter.

• Use Huawei E173 modem

• The modem has to be plugged into any of USB ports of LM2 and it starts operating

immediately

• Specific functions should be added into user script library with PIN code setting and

telephone number white-list which will be able to receive and send in SMS messages

Command syntax

Write to bus:

• W ALIAS VALUE

Read from bus:

• R ALIAS

• On read request, script will reply with SMS message containing current value of selected

object

Advanced guide | USB 2.0

82

ALIAS can be:

• Group address (e.g. 1/1/1)

• Name (e.g. Obj1). If name contains spaces then it must be escaped using double quotes (e.g.

“Room Temperature”)

Note: Object data type and name must be set in Configurator -> Objects tab. Otherwise script won’t

be able to read and write to object

Note: Only ASCII symbols are accepted in the message

Advanced guide | LUA – Programming language

83

6 LUA – Programming Language

LUA is a powerful, fast, lightweight, embeddable scripting language. LUA combines simple

procedural syntax with powerful data description constructs based on associative arrays and

extensible semantics. LUA is dynamically typed, runs by interpreting byte code for a register-based

virtual machine, and has automatic memory management with incremental garbage collection,

making it ideal for configuration, scripting, and rapid prototyping.

6.1 Object functions

grp provides simplified access to the objects stored in the database and group address request

helpers.

Most functions use alias parameter — object group address or unique object name. (e.g. '1/1/1' or

'My object')

grp.getvalue(alias)

Returns value for the given alias or LUA nil when object cannot be found.

grp.find(alias)

Returns single object for the given alias. Object value will be decoded automatically only if the data

type has been specified in the 'Objects' module. Returns LUA nil when object cannot be found,

otherwise it returns LUA table with the following items:

• address — object group address

• updatetime — latest update time in UNIX timestamp format. Use LUA os.date() to convert to

readable date formats

When object data type has been specified in the 'Objects' module the following fields are available:

• name — unique object name

• datatype — object data type as specified by user

• decoded — set to true when decoded value is available

• value — decoded object value

grp.tag(tags, mode)

Returns LUA table containing objects with the given tag. Tags parameter can be either LUA table or a

string. Mode parameter can be either 'all' (return objects that have all of the given tags) or 'any'

(default — returns objects that have any of the given tags). You can use Returned object functions on

the returned table.

grp.alias (alias)

Converts group address to object name or name to address. Returns LUA nil when object cannot be

found.

6.2 Group communication functions

These functions should only be used if it is required to access objects by group address directly, it is

recommended to use single or multiple object functions.

grp.write (alias, value, datatype)

Sends group write request to the given alias. Data type is taken from the database if not specified as

third parameter. Returns LUA boolean as the result.

Advanced guide | LUA – Programming language

84

grp.response (alias, value, datatype)

Similar to grp.write. Sends group response request to the given alias.

grp.read(alias)

Sends group read request to the given alias. Note: this function returns immediately and cannot be

used to return the result of read request. Use event-based script instead.

grp.update(alias, value, datatype)

Similar to grp.write, but does not send new value to the bus. Useful for objects that are used only in

visualization.

6.3 Returned object functions

Objects received by using grp.find(alias) or grp.tag(tags, mode) have the following functions

attached to them:

Always check that the returned object was found otherwise calling these functions will result in

an error. See the example below.

object:write(value, datatype)

Sends group write request to object's group address. Data type is taken from the database if not

specified as second parameter. Returns LUA boolean as the result.

object:response(value, datatype)

Similar to object:write. Sends group response request to object's group address.

object:read()

Sends group read request to object's group address. Note: this function returns immediately and

cannot be used to return the result of read request. Use event-based script instead.

object:update(value, datatype)

Similar to object:write, but does not send new value to the bus. Useful for objects that are used

only in visualization.

6.4 Data type functions

knxdatatype object provides data encoding and decoding between LUA and KNX data formats.

knxdatatype.decode(value, datatype)

Converts hex-encoded data to LUA variable based on given data type. Data type is specified either as

KNX primary data type (integer between 1 and 16) or a secondary data type (integer between 1000

and 16000).Return values:

• success — decoded data as LUA variable (type depends on data type), value length in bytes

• error — nil, error string

6.5 Data types

The following data types can be used for encoding and decoding of KNX data. Data representation

on LUA level and predefined constants (in bold) is given below:

• bool 1 bit (boolean) - dt.— boolean

• 2 bit (1 bit controlled) - dt.bit2 — number

• 4 bit (3 bit controlled) - dt.bit4 — number

• 1 byte ASCII character - dt.char — string

• 1 byte unsigned integer - dt.uint8 — number

• 1 byte signed integer - dt.int8 — number

• 2 byte unsigned integer - dt.uint16 — number

Advanced guide | LUA – Programming language

85

• 2 byte signed integer - dt.int16 — number

• 2 byte floating point - dt.float16 — number

• 3 byte time / day - dt.time — table with the following items:

o day — number (0-7)

o hour — number (0-23)

o minute — number (0-59)

o second — number (0-59)

• 3 byte date - dt.date — table with the following items:

o day — number (1-31)

o month — number (1-12)

o year — number (1990-2089)

• 4 byte unsigned integer - dt.uint32 — number

• 4 byte signed integer - dt.int32 — number

• 4 byte floating point - dt.float32 — number

• 4 byte access control - dt.access — number, currently not fully supported

• 14 byte ASCII string - dt.string — string, null characters ('\0') are discarded during decoding

6.6 Data storage functions

storage object provides persistent key-value data storage for user scripts. Only the following LUA

data types are supported:

• boolean

• number

• string

• table

storage.set(key, value)

Sets new value for the given key. Old value is overwritten. Returns boolean as the result and an

optional error string.

storage.get(key, default)

Gets value for the given key or returns default value (nil if not specified) if key is not found in the

data storage.

Note: all user scripts share the same data storage. Make sure that same keys are not used to store

different types of data.

Examples

• The following examples shows the basic syntax of storage.set. Result will return

boolean true since the passed parameters are correct

result=storage.set('my_stored_value_1', 12.21)

• This example will return false as the result because we are trying to store a function which is

not possible.

testfn=function(t)

return t * t

end

result =storage.set('my_stored_value_2', testfn)-- this will result in an error

Advanced guide | LUA – Programming language

86

• The following examples shows the basic syntax of storage.get. Assuming that key value was

not found, first call will return nil while second call will return number 0 which was specified

as a default value.

result =storage.get('my_stored_value_3')-- returns nil if value is not found

result =storage.get('my_stored_value_3', 0)-- returns 0 if value is not found

• When storing tables make sure to check the returned result type. Assume we have created a

storage item with key test_object_data.

objectdata={}

objectdata.temperature=23.1

objectdata.scene='default'

result =storage.set('test_object_data', objectdata)-- store objectdata variable as

'test_object_data'

• Now we are retrieving data from storage. Data type is checked for correctness.

objectdata=storage.get('test_object_data')

if type(objectdata)=='table'then

if objectdata.temperature> 24 then

-- do something if temperature level is too high

end

end

6.7 Alert functions

Alert (message, [var1, [var2, [var3]]])

Stores alert message and current system time in the main database. All alerts are accessible in the

"Alerts" module. This function behaves exactly as LUA string.format.

Example

temperature = 25.3

if temperature > 24 then

-- resulting message: 'Temperature levels are too high: 25.3'

 alert('Temperature level is too high: %.1f', temperature)

end

Advanced guide | LUA – Programming language

87

6.8 Log functions

Log (var1, [var2, [var3, ...]])

Converts variables to human-readable form and stores them in the main database. All items are

accessible in the "Logs" module.

Example

-- log function accepts LUA nil, boolean, number and table (up to 5 nested levels) type variables

a ={ key1 ='value1', key2 =2}

b ='test'

c =123.45

-- logs all passed variables

log(a, b, c)

6.9 Time functions

os.sleep(delay)

Delay the next command execution for the delay seconds.

os.microtime ()

Returns two values: current timestamp in seconds and timestamp fraction in nanoseconds

os.udifftime (sec, usec)

Returns time difference as floating point value between now and timestamp components passed

to this function (seconds, nanoseconds)

Advanced guide | LUA – Programming language

88

6.10 String functions

This library provides generic functions for string manipulation, such as finding and extracting

substrings, and pattern matching. When indexing a string in LUA, the first character is at position 1

(not at 0, as in C).

Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the

string. Thus, the last character is at position -1, and so on.

The string library provides all its functions inside the table string. It also sets a metatable for strings

where the __index field points to the string table. Therefore, you can use the string functions in

object-oriented style. For instance, string.byte(s, i) can be written as s:byte(i). The string library

assumes one-byte character encodings.

string.trim (str)

Trims the leading and trailing spaces off a given string.

string.split (str, sep)

Splits string by given separator string. Returns LUA table.

string.byte (s [, i [, j]])

Returns the internal numerical codes of the characters s[i], s[i+1], ···, s[j]. The default value for i is 1;

the default value for j is i. Note that numerical codes are not necessarily portable across platforms.

string.char (···)

Receives zero or more integers. Returns a string with length equal to the number of arguments, in

which each character has the internal numerical code equal to its corresponding argument. Note

that numerical codes are not necessarily portable across platforms.

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns the indices of

s where this occurrence starts and ends; otherwise, it returns nil. A third, optional numerical

argument init specifies where to start the search; its default value is 1 and can be negative. A value

of true as a fourth, optional argument plain turns off the pattern matching facilities, so the function

does a plain "find substring" operation, with no characters in pattern being considered "magic".

Note that if plain is given, then init must be given as well. If the pattern has captures, then in a

successful match the captured values are also returned, after the two indices.

string.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the description given in

its first argument (which must be a string). The format string follows the same rules as the printf

family of standard C functions. The only differences are that the options/modifiers *, l, L, n, p, and h

are not supported and that there is an extra option, q. The q option formats a string in a form

suitable to be safely read back by the LUA interpreter: the string is written between double quotes,

and all double quotes, newlines, embedded zeros, and backslashes in the string are correctly

escaped when written. For instance, the call

 string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

Advanced guide | LUA – Programming language

89

 "a string with \"quotes\" and \

 new line"

The options c, d, E, e, f, g, , i, o, u, X, and x all expect a number as argument, whereas q and s

expect a string. This function does not accept string values containing embedded zeros, except as

arguments to the q option.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures from pattern over

string s. If pattern specifies no captures, then the whole match is produced in each call. As an

example, the following loop

s = "hello world from LUA"

for w in string.gmatch(s, "%a+") do

 print(w)

end

will iterate over all the words from string s, printing one per line. The next example collects all pairs

key=value from the given string into a table:

t = {}

s = "from=world, to=LUA"

for k, v in string.gmatch(s, "(%w+)=(%w+)") do

 t[k] = v

end

For this function, a '^' at the start of a pattern does not work as an anchor, as this would prevent the

iteration.

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have been

replaced by a replacement string specified by repl, which can be a string, a table, or a function. gsub

also returns, as its second value, the total number of matches that occurred.

If repl is a string, then its value is used for replacement. The character % works as an escape

character: any sequence in repl of the form %n, with n between 1 and 9, stands for the value of the

n-th captured substring (see below). The sequence %0 stands for the whole match. The sequence

%% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key; if the

pattern specifies no captures, then the whole match is used as the key.

If repl is a function, then this function is called every time a match occurs, with all captured

substrings passed as arguments, in order; if the pattern specifies no captures, then the whole match

is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a number, then it is used

as the replacement string; otherwise, if it is false or nil, then there is no replacement (that is, the

original match is kept in the string).

Advanced guide | LUA – Programming language

90

Examples:

x = string.gsub("hello world", "(%w+)", "%1 %1")

 --> x="hello hello world world"

x = string.gsub("hello world", "%w+", "%0 %0", 1)

 --> x="hello hello world"

x = string.gsub("hello world from LUA", "(%w+)%s*(%w+)", "%2 %1")

 --> x="world hello LUA from"

x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)

 --> x="home = /home/roberto, user = roberto"

x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)

 return loadstring(s)()

 end)

 --> x="4+5 = 9"

local t = {name="LUA", version="5.1"}

x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)

 --> x="LUA-5.1.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are

counted, so "a\000bc\000" has length 5.

string.lower (s)

Receives a string and returns a copy of this string with all uppercase letters changed to lowercase. All

other characters are left unchanged. The definition of what an uppercase letter is depends on the

current locale.

 string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns the captures

from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is

returned. A third, optional numerical argument init specifies where to start the search; its default

value is 1 and can be negative.

string.rep (s, n)

Returns a string that is the concatenation of n copies of the string s.

 string.reverse (s)

Returns a string that is the string s reversed.

Advanced guide | LUA – Programming language

91

string.sub (s, i [, j])

Returns the substring of s that starts at i and continues until j; i and j can be negative. If j is absent,

then it is assumed to be equal to -1 (which is the same as the string length). In particular, the call

string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns a suffix of s with length

i.

 string.upper (s)

Receives a string and returns a copy of this string with all lowercase letters changed to uppercase. All

other characters are left unchanged. The definition of what a lowercase letter is depends on the

current locale.

Patterns

Character Class:

A character class is used to represent a set of characters. The following combinations are allowed in

describing a character class:

• x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the character x

itself.

• .: (a dot) represents all characters.

• %a: represents all letters.

• %c: represents all control characters.

• %d: represents all digits.

• %l: represents all lowercase letters.

• %p: represents all punctuation characters.

• %s: represents all space characters.

• %u: represents all uppercase letters.

• %w: represents all alphanumeric characters.

• %x: represents all hexadecimal digits.

• %z: represents the character with representation 0.

• %x: (where x is any non-alphanumeric character) represents the character x. This is the

standard way to escape the magic characters. Any punctuation character (even the non

magic) can be preceded by a '%' when used to represent itself in a pattern.

• [set]: represents the class which is the union of all characters in set. A range of characters

can be specified by separating the end characters of the range with a '-'. All classes %x

described above can also be used as components in set. All other characters in set represent

themselves. For example, [%w_] (or [_%w]) represents all alphanumeric characters plus the

Advanced guide | LUA – Programming language

92

underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the octal digits plus

the lowercase letters plus the '-' character.

• The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z]

or [a-%%] have no meaning.

• [^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter

represents the complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In

particular, the class [a-z] may not be equivalent to %l.

Pattern Item:

A pattern item can be:

• a single character class, which matches any single character in the class;

• a single character class followed by '*', which matches 0 or more repetitions of characters

in the class. These repetition items will always match the longest possible sequence;

• a single character class followed by '+', which matches 1 or more repetitions of characters

in the class. These repetition items will always match the longest possible sequence;

• a single character class followed by '-', which also matches 0 or more repetitions of

characters in the class. Unlike '*', these repetition items will always match the shortest

possible sequence;

• a single character class followed by '?', which matches 0 or 1 occurrence of a character in

the class;

• %n, for n between 1 and 9; such item matches a substring equal to the n-th captured string

(see below);

• %bxy, where x and y are two distinct characters; such item matches strings that start with

x, end with y, and where the x and y are balanced. This means that, if one reads the string

from left to right, counting +1 for an x and -1 for a y, the ending y is the first y where the

count reaches 0. For instance, the item %b() matches expressions with balanced

parentheses.

Pattern:

A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors the match at the

beginning of the subject string. A '$' at the end of a pattern anchors the match at the end of the

subject string. At other positions, '^' and '$' have no special meaning and represent themselves.

Captures:

Advanced guide | LUA – Programming language

93

A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a match

succeeds, the substrings of the subject string that match captures are stored (captured) for future

use. Captures are numbered according to their left parentheses. For instance, in the pattern

"(a*(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the first capture (and

therefore has number 1); the character matching "." is captured with number 2, and the part

matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For instance,

if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3 and 5. A pattern

cannot contain embedded zeros. Use %z instead.

6.11 Input and output functions

io.exists (path)

Checks if given path (file or directory) exists. Return boolean.

io.readfile (file)

Reads whole file at once. Return file contents as a string on success or nil on error.

io.writefile (file, data)

Writes given data to a file. Data can be either a value convertible to string or a table of such

values. When data is a table then each table item is terminated by a new line character. Return

boolean as write result when file can be open for writing or nil when file cannot be accessed.

6.12 Script control function

script.enable('scriptname')

Enable the script with the name scriptname.

script.disable('scriptname')

Disable the script with the name scriptname.

status = script.status('scriptname')

Returns true/false if script is found, nil otherwise

6.13 Conversions

Compatibility layer: lmcore is an alias of cnv.

cnv.strtohex (str)

Converts given binary string to a hex-encoded string.

cnv.hextostr (hex [, keepnulls])

Converts given hex-encoded string to a binary string. NULL characters are ignored by default, but

can be included by setting second parameter to true.

cnv.tonumber (value)

Converts the given value to number using following rules: numbers and valid numeric strings are

treated as is, boolean true is 1, boolean false is 0, everything else is nil.

cnv.hextoint(hexvalue, bytes)

Converts the given hex string to and integer of a given length in bytes.

Advanced guide | LUA – Programming language

94

cnv.inttohex(intvalue, bytes)

Converts the given integer to a hex string of given bytes.

cnv.strtohex(str)

Converts the given binary string to a hex-encoded string.

cnv.hextostr(hexstr)

Converts the given hex-encoded string to a binary string.

6.14 Bit operators

bit.bnot (value)

Binary not

bit.band (x1 [, x2...])

Binary and between any number of variables

bit.bor (x1 [, x2...])

Binary and between any number of variables

bit.bxor (x1 [, x2...])

Binary and between any number of variables

bit.lshift (value, shift)

Left binary shift

bit.rshift (value, shift)

Right binary shift

6.15 Input and output facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file

descriptors; that is, there are operations to set a default input file and a default output file, and

all input/output operations are over these default files. The second style uses explicit file

descriptors.

When using implicit file descriptors, all operations are supplied by table io. When using explicit

file descriptors, the operation io.open returns a file descriptor and then all operations are

supplied as methods of the file descriptor.

The table io also provides three predefined file descriptors with their usual meanings from C:

io.stdin, io.stdout, and io.stderr. The I/O library never closes these files.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second

result and a system-dependent error code as a third result) and some value different from nil on

success.

io.close ([file])

Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()

Equivalent to file:flush over the default output file.

Advanced guide | LUA – Programming language

95

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its handle as the

default input file. When called with a file handle, it simply sets this file handle as the default

input file. When called without parameters, it returns the current default input file. In case of

errors this function raises the error, instead of returning an error code.

io.lines ([filename])

Opens the given file name in read mode and returns an iterator function that, each time it is

called, returns a new line from the file. Therefore, the construction will iterate over all lines of

the file. When the iterator function detects the end of file, it returns nil (to finish the loop) and

automatically closes the file.

for line in io.lines(filename) do body end

The call io.lines() (with no file name) is equivalent to io.input():lines(); that is, it iterates over the

lines of the default input file. In this case it does not close the file when the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new file handle,

or, in case of errors, nil plus an error message. The mode string can be any of the following:

• "r": read mode (the default);

• "w": write mode;

• "a": append mode;

• "r+": update mode, all previous data is preserved;

• "w+": update mode, all previous data is erased;

• "a+": append update mode, previous data is preserved, writing is only allowed at the end of

file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the file

in binary mode. This string is exactly what is used in the standard C function fopen.

io.output ([file])

Similar to io.input, but operates over the default output file.

6.16 Mathematical functions

This library is an interface to the standard C math library. It provides all its functions inside the

table math.

math.abs (x)

Returns the absolute value of x.

math.acos (x)

Returns the arc cosine of x (in radians).

math.asin (x)

Returns the arc sine of x (in radians).

Advanced guide | LUA – Programming language

96

math.atan (x)

Returns the arc tangent of x (in radians).

math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the

quadrant of the result. (It also handles correctly the case of x being zero.)

math.ceil (x)

Returns the smallest integer larger than or equal to x.

math.cos (x)

Returns the cosine of x (assumed to be in radians).

math.cosh (x)

Returns the hyperbolic cosine of x.

math.deg (x)

Returns the angle x (given in radians) in degrees.

 math.exp (x)

Returns the value ��.

 math.floor (x)

Returns the largest integer smaller than or equal to x.

 math.fmod (x, y)

Returns the remainder of the division of x by y that rounds the quotient towards zero.

 math.frexp (x)

Returns m and e such that x = �2�, e is an integer and the absolute value of m is in the range

[0.5, 1) (or zero when x is zero).

 math.huge

The value HUGE_VAL, a value larger than or equal to any other numerical value.

 math.ldexp (m, e)

Returns �2�, (e should be an integer).

 math.log (x)

Returns the natural logarithm of x.

 math.log10 (x)

Returns the base-10 logarithm of x.

 math.max (x, ···)

Returns the maximum value among its arguments.

 math.min (x, ···)

Returns the minimum value among its arguments.

 math.modf (x)

Returns two numbers, the integral part of x and the fractional part of x.

Advanced guide | LUA – Programming language

97

math.pi

The value of pi.

math.pow (x, y)

Returns �� . (You can also use the expression x^y to compute this value.)

 math.rad (x)

Returns the angle x (given in degrees) in radians.

 math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand provided by

ANSI C. (No guarantees can be given for its statistical properties.)

When called without arguments, returns a uniform pseudo-random real number in the range

[0,1). When called with an integer number m, math.random returns a uniform pseudo-random

integer in the range [1,m]. When called with two integer numbers m and n, math.random

returns a uniform pseudo-random integer in the range [m, n].

 math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of

numbers.

 math.sin (x)

Returns the sine of x (assumed to be in radians).

 math.sinh (x)

Returns the hyperbolic sine of x.

 math.sqrt (x)

Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

 math.tan (x)

Returns the tangent of x (assumed to be in radians).

 math.tanh (x)

Returns the hyperbolic tangent of x.

6.17 Table manipulation

This library provides generic functions for table manipulation. It provides all its functions inside

the table table. Most functions in the table library assume that the table represents an array or a

list. For these functions, when we talk about the "length" of a table we mean the result of the

length operator.

table.concat (table [, sep [, i [, j]]])

Given an array where all elements are strings or numbers, returns table[i]..sep..table[i+1] ···

sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default

for j is the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open space, if

necessary. The default value for pos is n+1, where n is the length of the table, so that a call

table.insert(t,x) inserts x at the end of table t.

Advanced guide | LUA – Programming language

98

table.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table has no

positive numerical indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to close the

space, if necessary. Returns the value of the removed element. The default value for pos is n,

where n is the length of the table, so that a call table.remove(t) removes the last element of

table t.

table.sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length of

the table. If comp is given, then it must be a function that receives two table elements, and

returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true after

the sort). If comp is not given, then the standard LUA operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may have

their relative positions changed by the sort.

6.18 Operating system facilities

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the given string

format. If the time argument is present, this is the time to be formatted (see the os.time

function for a description of this value). Otherwise, date formats the current time.

If format starts with '!', then the date is formatted in Coordinated Universal Time. After this

optional character, if format is the string "*t", then date returns a table with the following

fields: year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday

(weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).

If format is not "*t", then date returns the date as a string, formatted according to the same

rules as the C function strftime.

When called without arguments, date returns a reasonable date and time representation that

depends on the host system and on the current locale (that is, os.date() is equivalent to

os.date("%c")).

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other

systems, this value is exactly t2-t1.

os.execute ([command])

This function is equivalent to the C function system. It passes command to be executed by an

operating system shell. It returns a status code, which is system-dependent. If command is

absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])

Calls the C function exit, with an optional code, to terminate the host program. The default

value for code is the success code.

Advanced guide | LUA – Programming language

99

os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not

defined.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be removed. If

this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a

string describing the error.

os.time ([table])

Returns the current time when called without arguments, or a time representing the date and

time specified by the given table. This table must have fields year, month, and day, and may

have fields hour, min, sec, and isdst (for a description of these fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX, Windows,

and some other systems, this number counts the number of seconds since some given start

time (the "epoch"). In other systems, the meaning is not specified, and the number returned by

time can be used only as an argument to date and difftime.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must be explicitly

opened before its use and explicitly removed when no longer needed. On some systems

(POSIX), this function also creates a file with that name, to avoid security risks. (Someone else

might create the file with wrong permissions in the time between getting the name and

creating the file.) You still have to open the file to use it and to remove it (even if you do not use

it).

When possible, you may prefer to use io.tmpfile, which automatically removes the file when the

program ends

6.19 Extended function library

toboolean(value)

Converts the given value to boolean using following rules: nil,

boolean false, 0, empty string, '0' string are treated as false, everything else as true

string.split(str, sep)

Splits the given string into chunks by the given separator.Returns LUA table.

knxlib.decodeia(indaddressa, indaddressb)

Converts binary-encoded individual address to LUA string. This function accepts either one or

two arguments (interpreted as two single bytes).

knxlib.decodega(groupaddressa, groupaddressb)

Converts binary-encoded group adress to LUA string. This function accepts either one or two

arguments (interpreted as two single bytes).

Advanced guide | LUA – Programming language

100

knxlib.encodega(groupaddress, separate)

Converts LUA string to binary-encoded group adress. Returns group address a single LUA

number when second argument is nil or false and two separate bytes otherwise.

ipairs (t)

Returns three values: an iterator function, the table t, and 0, so that the construction will iterate

over the pairs (1,t[1]), (2,t[2]), ···, up to the first integer key absent from the table.

for i,v in ipairs(t) do body end

next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second

argument is an index in this table. next returns the next index of the table and its associated

value. When called with nil as its second argument, next returns an initial index and its

associated value. When called with the last index, or with nil in an empty table, next returns nil.

If the second argument is absent, then it is interpreted as nil. In particular, you can use next(t) to

check whether a table is empty. The order in which the indices are enumerated is not specified,

even for numeric indices. (To traverse a table in numeric order, use a numerical for or the ipairs

function.) The behavior of next is undefined if, during the traversal, you assign any value to a

non-existent field in the table. You may however modify existing fields. In particular, you may

clear existing fields.

pairs (t)

Returns three values: the next function, the table t, and nil, so that the construction will iterate

over all key–value pairs of table t.

 for k,v in pairs(t) do body end

tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a string

convertible to a number, then tonumber returns this number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer

between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either upper or lower case)

represents 10, 'B' represents 11, and so forth, with 'Z' representing 35. In base 10 (the default),

the number can have a decimal part, as well as an optional exponent part. In other bases, only

unsigned integers are accepted.

 tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For

complete control of how numbers are converted, use string.format.

If the metatable of e has a "__tostring" field, then tostring calls the corresponding value with e

as

argument, and uses the result of the call as its result.

 type (v)

Returns the type of its only argument, coded as a string. The possible results of this function are

"nil" (a string, not the value nil), "number", "string", "boolean", "table", "function", "thread", and

"userdata".

Advanced guide | LUA – Programming language

101

7 Script examples

7.1 Binary filter

Create two 1bit group addresses under Object tab where

1/1/1 input

1/1/2 output

Create event –based script and attach it to group 1/1/1. Script will run each time group 1/1/1 receive

telegram

Add fallowing code to Script editor

value_1 = grp.getvalue('1/1/1')

if value_1 == true then

-- do nothing

elseif value_1 == false then

grp.write('1/1/2', false)

end

7.2 Binary gate with bit gate

Create three 1bit group addresses under Object tab where

1/1/1 input

1/1/2 gate

1/1/3 output

Create event –based script and attach it to group 1/1/1. Script will run each time group 1/1/1 receive

telegram

Add fallowing code to Script editor

value_1 = grp.getvalue('1/1/1') --input

value_2 = grp.getvalue('1/1/2') --gate

if value_2 == true then

-- do nothing

elseif value_2 == false then

grp.write('1/1/3', value_1) --output

end

7.3 Gate with byte gate

Create three group addresses under Object tab where

1/1/1 input – any type but the same as output

1/1/2 gate- byte object

1/1/3 output – the same as input

Advanced guide | LUA – Programming language

102

Create event –based script and attach it to group 1/1/1. Script will run each time group 1/1/1 receive

telegram

Add fallowing code to Script editor

value_1 = grp.getvalue('1/1/1') -- input

value_2 = grp.getvalue('1/1/2') --gate

if value_2 == 0 then

-- do nothing

elseif value_2 < 0 or value_2 > 0 then

grp.write('1/1/3', value_1) --output

end

7.4 Or - Port (2 in 1 0ut)

Create three 1bit group addresses under Object tab where

1/1/1 value 1

1/1/2 value 2

1/1/3 output

Add tag OR1 to value1 and value2 group addresses.

Create event –based script and attach it to Tag OR1. Script will run each time group 1/1/1 or group

1/1/2 receive telegram

Add fallowing code to Script editor

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2')

if value_1 == true or value_2 == true then

grp.write('1/1/3', true)

else

grp.write('1/1/3', false)

end

7.5 And - Port (2 in 1 0ut)

Create three 1bit group addresses under Object tab where

1/1/1 value 1

1/1/2 value 2

1/1/3 output

Add tag AND1 to value1 and value2 group addresses.

Create event –based script and attach it to Tag AND1. Script will run each time group 1/1/1 or group

1/1/2 receive telegram

Add fallowing code to Script editor

Advanced guide | LUA – Programming language

103

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2')

if value_1 == true and value_2 == true then

grp.write('1/1/3', true)

else

grp.write('1/1/3', false)

end

7.6 Or - Port (5 in 2 0ut)

Create group addresses under Object tab where

1/1/1 value 1 - 1bit

1/1/2 value 2 - 1bit

1/1/3 value 3 - 1bit

1/1/4 value 4 - 1bit

1/1/5 value 5 - 1bit

1/1/6 bit_output - 1bit

1/1/7 byte_output - 1byte

Add tag OR2 to group addresses value1, value2, value3, value4 and value 5.

Create event –based script and attach it to Tag OR2. Script will run each time groups 1/1/1, 1/1/2,

1/1/3, 1/1/4, 1/1/5 receive telegram

Add fallowing code to Script editor

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2')

value_3 = grp.getvalue('1/1/3')

value_4 = grp.getvalue('1/1/4')

value_5 = grp.getvalue('1/1/5')

if value_1 == true or value_2 == true or value_3 == true or value_4 == true or value_5 == true then

grp.write('1/1/6', true) -- bit to 1

grp.write('1/1/7', 255) -- byte to 255

else

grp.write('1/1/6', false) -- bit to 0

grp.write('1/1/7', 0) -- byte to 0

end

7.7 And - Port (5 in 2 0ut)

Create group addresses under Object tab where

1/1/1 value 1 - 1bit

1/1/2 value 2 - 1bit

1/1/3 value 3 - 1bit

Advanced guide | LUA – Programming language

104

1/1/4 value 4 - 1bit

1/1/5 value 5 - 1bit

1/1/6 bit_output - 1bit

1/1/7 byte_output - 1byte

Add tag AND2 to group addresses value1, value2, value3, value4 and value 5.

Create event –based script and attach it to Tag AND2. Script will run each time groups 1/1/1, 1/1/2,

1/1/3, 1/1/4, 1/1/5 receive telegram

Add fallowing code to Script editor

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2')

value_3 = grp.getvalue('1/1/3')

value_4 = grp.getvalue('1/1/4')

value_5 = grp.getvalue('1/1/5')

if value_1 == true and value_2 == true and value_3 == true and value_4 == true and value_5 == true

then

grp.write('1/1/6', true) -- bit to 1

grp.write('1/1/7', 255) -- byte to 255

else

grp.write('1/1/6', false) -- bit to 0

grp.write('1/1/7', 0) -- byte to 0

end

7.8 Telegram transformer (0/1 bit to 0-255 byte)

Create two group addresses under Object tab where

1/1/1 input – 1bit

1/1/2 output – 1byte

Create event –based script and attach it to group 1/1/1. Script will run each time group 1/1/1 receive

telegram

Add fallowing code to Script editor:

value_1 = grp.getvalue('1/1/1')

if value_1 == true then -- bit value (in)

grp.write('1/1/2', 255) -- byte value (out)

else

grp.write('1/1/2', 0) -- byte value (out)

end

7.9 Compare value

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2')

if value_1 == value_2 then

grp.write('1/1/3', true) -- bit to 1

grp.write('1/1/4', 255) -- byte to 255

else

Advanced guide | LUA – Programming language

105

grp.write('1/1/3', false) -- bit to 0

grp.write('1/1/4', 0) -- byte to 0

end

7.10 Save Scene 1 (RGB value)

value_1 = grp.getvalue('1/1/1') --RED

value_2 = grp.getvalue('1/1/2') --GREEN

value_3 = grp.getvalue('1/1/3') --BLUE

storage.set('Scene1_Red', value_1)

storage.set('Scene1_Green', value_2)

storage.set('Scene1_Blue', value_3)

7.11 Call Scene 1 (RGB value

value_1 = storage.get('Scene1_Red')

value_2 = storage.get('Scene1_Green')

value_3 = storage.get('Scene1_Blue')

if not value_1 then

--if storage value does not exist do nothing

else

grp.write('1/1/1', value_1) --RED

end

if not value_2 then

--if storage value does not exist do nothing

else

grp.write('1/1/2', value_2) --GREEN

end

if not value_3 then

--if storage value does not exist do nothing

else

grp.write('1/1/3', value_3) --BLUE

end

7.12 Hysteresis

(do not change object 1/1/2 when value of object 1/1/1 is between 100 and 200)

value_1 = grp.getvalue('1/1/1') -- byte value

if value_1 < 100 then

grp.write('1/1/2', false) -- bit to 0

elseif value_1 > 200 then

grp.write('1/1/2', true) -- bit to 0

end

7.13 Random byte value

steps = 255 -- possible steps change this value to lower value to make bigger steps

random = math.random(0, (steps - 1)) * 255 / (steps - 1)

outcome = (math.floor(random))

value_1 = grp.getvalue('1/1/1')

grp.write('1/1/1', outcome) -- Write random byte value to object

Advanced guide | LUA – Programming language

106

7.14 Cyclic Repeater (delay 60 seconds)

value_1 = grp.getvalue('1/1/1')

if value_1 == true then

repeat

value_1 = grp.getvalue('1/1/1')

if value_1 == true then

grp.write('1/1/2', true)

-- wait for 60 seconds

os.sleep(60)

end

until value_1 == false

end

7.15 Stepper / Counter Positive input

value_1 = grp.getvalue('1/1/1') -- Positive input

if value_1 == true then

Stepper_Value = storage.get('Value_Stepper_1')

if not Stepper_Value then

Stepper_Value = 0

end

if Stepper_Value == 255 then

else

Stepper_Value = Stepper_Value + 1

end

storage.set('Value_Stepper_1', Stepper_Value)

grp.write('1/1/4', Stepper_Value)

end

7.16 Stepper / Counter Negative input

value_1 = grp.getvalue('1/1/2') -- Negative input

if value_1 == true then

Stepper_Value = storage.get('Value_Stepper_1')

if not Stepper_Value then

Stepper_Value = 0

end

if Stepper_Value == 0 then

else

Stepper_Value = Stepper_Value - 1

end

storage.set('Value_Stepper_1', Stepper_Value)

grp.write('1/1/4', Stepper_Value)

end

7.17 Reset Stepper / Counter

value_1 = grp.getvalue('1/1/3')

if value_1 == true then

storage.set('Value_Stepper_1', 0)

grp.write('1/1/4', 0)

end

Advanced guide | LUA – Programming language

107

7.18 On Delay (button set to "update only internal")

value_1 = grp.getvalue('1/1/1')

if value_1 == true then

os.sleep(3) -- Delay time

grp.write('1/1/1', true)

end

7.19 Average

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2')

Average = value_1 + value_2

Average = (Average / 2)

value_3 = grp.getvalue('1/1/3')

grp.write('1/1/3', Average)

7.20 Off Delay

value_1 = grp.getvalue('1/1/1')

if value_1 == true then

os.sleep(3) -- Delay time

grp.write('1/1/1', false)

end

7.21 Stare case timer (with variable time object)

value_1 = grp.getvalue('1/1/1')

value_2 = grp.getvalue('1/1/2') -- Variable value

if value_1 == true then

os.sleep(value_2)

grp.write('1/1/1', false)

end

7.22 Value memory (write to storage)

value_1 = grp.getvalue('1/1/1')

storage.set('Storage_Value_Memory_1', value_1)

7.23 Value memory (get from storage)

Value_Memory_1 = storage.get('Storage_Value_Memory_1')

if not Value_Memory_1 then

-- do nothing

else

grp.write('1/1/1', Value_Memory_1)

end

7.24 Multiplexer (1 in / 3 out) Notice: Object type needs to be the same

 value_1 = grp.getvalue('1/1/1')

 grp.write('1/1/2', Value_1)

 grp.write('1/1/3', Value_1)

 grp.write('1/1/4', Value_1)

7.25 Round function using Common functions

Add following code to common functions

Advanced guide | LUA – Programming language

108

-- Rounds a number to the given number of decimal places...

function round(num, idp)

local mult = 10^(idp or 0)

return math.floor(num * mult + 0.5) / mult

end

Create script in script editor

-- Round function (with global function)

value_1 = grp.getvalue('1/1/1')

round(value_1, 2) -- using function round from common functions

grp.write('1/1/1', Value_2)

7.26 Write data and time to KNX group addresses

-- get current data as table

now = os.date('*t')

-- system week day starts from sunday, convert it to knx format

wday = now.wday == 1 and 7 or now.wday - 1

-- time table

time = {

day = wday,

hour = now.hour,

minute = now.min,

second = now.sec,

}

-- date table

date = {

day = now.day,

month = now.month,

year = now.year,

}

-- write to bus

grp.write('1/1/2', time, dt.time)

grp.write('1/1/1', date, dt.date)

7.27 Write data to groups with tags

Create few 1bit group addresses and add tag ‘Light’ to them

Create one more group different one from the others to trigger script.

1/1/1 – Lihgt1 – Tag ‘Light’

1/1/2 – Lihgt2 – Tag ‘Light’

1/1/3 – Lihgt3 – Tag ‘Light’

1/1/4 – Lihgt4 – Tag ‘Light’

1/1/5 – Lihgt5 – Tag ‘Light’

1/1/6 – Lihgt6 – Tag ‘Light’

1/1/10 – Scene active group –no tag attached!

Create event –based script and attach it to group 1/1/10. Script will run each time group 1/1/10

receive telegram

Add fallowing code to Script editor:

Advanced guide | LUA – Programming language

109

AllLights = grp.tag('Light')

AllLights: write(true)

All lights will be switched on each time group 1/1/10 receive telegram.

Note: Do not start script from the same tag or group addresses containing the same tag. This will

create infinite loop which will generate lots of bus traffic and high load on processor.

If infinite loop is created stop the script and reboot HomeLYnk.

